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0 Introduction

The aim of this note is to prove the Hodge decomposition theorem for compact Kähler manifolds.

On any complex manifold, the complex valued k−forms split as ΩkX =
⊕

Ωp,q. The Hodge decom-

position tells us that this holds when we pass to cohomology as well, but only for a special class

of complex manifolds (importantly, there are complex manifolds for which the decomposition does

not hold, e.g. Hopf surfaces)

The outline will be the following: we start first with a brief review of the local theory, i.e. complex

analysis of several variables.

Then we move to the definition of a complex manifold and prove various things about the complex-

ified tangent bundle and the holomorphic tangent bundle. We mention almost complex structures

and the Newlander-Nirenber theorem only briefly, as we will almost exclusively be dealing with

compact Kähler manifolds. We define the ∂ and ∂ operators, the latter of which is used to define

Dolbeault cohomology. We also prove a Poincare-type lemma for the Dolbeault complex, which

will be essential in showing the Dolbeault complex gives us a resolution of sheaves.

Then we will define Kähler manifolds and show in particular that complex projective space (and

all its submanifolds, i.e. projective manifolds) carries a Kähler metric, the Fubini-Study metric.

After that, we deal with sheaves and sheaf cohomology, and their relation to vector bundles. A lot

of the proofs have been omitted, but they can be found in most books on algebraic geometry or

homological algebra.

Finally, the last section is devoted to proving the Hodge decomposition theorem. For this, we need

to define the Hodge star operator, Laplacians and harmonic forms, as well as the Kähler identities.

The Hodge decomposition theorem then follows using an application of a difficult theorem on

elliptic partial differential operators.
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1 Review of complex analysis, local theory

We begin by defining the basic objects of complex geometry, namely differential forms and holo-

morphic functions in the case of Cn. This will be done by taking the usual cotangent bundle,

complexifying it and doing a lot of linear algebra.

1.1 Complex differential forms and holomorphic functions

Given U ⊆ C open, we can think of U as an open subset of R2 and we have the usual C∞ tangent

bundle TU , whose sections are the smooth vector fields. Now define dz = dx + idy, which takes

in values in TU and lands in C. In other words, it is a differential 1-form with coefficients in C,

dz ∈ T ∗
U ⊗ C. Moreover, its conjugate is dz̄ = dx − idy. Hence dz and dz̄ form a basis of this

complexified cotangent bundle which we denote by ΩU,C. We have that

dx =
1

2
(dz + dz̄), dy =

−i
2
(dz − dz̄)

Taking duals, we get that

∂

∂x
=

1

2
(
∂

∂z
+

∂

∂z̄
),
∂

∂y
=

−i
2
(
∂

∂z
− ∂

∂z̄
)

We can extend the usual exterior derivative C-linearly, and for a smooth function f , its derivative

will end up in the complexified cotangent bundle, whose basis consists of dz and dz. If we put

df = fzdz + fz̄dz̄, then evaluating at ∂
∂x and ∂

∂y respectively tells us that ∂f
∂x = fz + fz̄ and

∂f
∂y = ifz − ifz̄. By elimination, we compute that

∂f

∂z
:= fz =

1

2
(
∂f

∂x
− i

∂f

∂y
)

∂f

∂z̄
:= fz̄ =

1

2
(
∂f

∂x
+ i

∂f

∂y
)

(1.1)

Observation: We can interpret the Cauchy-Riemann equations as precisely equivalent to

the equation ∂f
∂z̄ = 0. In other words, if f is holomorphic, then df = fzdz.

Now let us see what happens to the matrix of the complexified exterior derivative. The usual

Jacobian matrix for the differential of f is given by

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

. Now, i acts on R2 as the matrix

j =

0 −1

1 0

 (we will define this later as an almost complex structure). The Cauchy-Riemann

equations can now be seen to be equivalent to the commuting of the Jacobian df with the endo-

morphism j. In other words, a function f is holomorphic if and only if its differential is not only

R-linear, but C-linear!

Extending this to the multivariable case, the real and complex Jacobians of a smooth function f
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are related as following: the usual real Jacobian of f with respect to the basis { ∂
∂xi

. ∂∂yi } is

JR(f) =

( ∂ui

∂xj
)i,j (∂ui

∂yj
)i,j

( ∂vi∂xj
)i,j ( ∂vi∂yj

)i,j


This can be extended to a C-linear map with the same determinant, namely (this time with respect

to the basis { ∂
∂zi
, ∂
∂zi

}): ( ∂fi∂zj
)i,j ( ∂fi∂z̄j

)i,j

( ∂f̄i∂zj
)i,j ( ∂f̄i∂z̄j

)i,j

 (1.2)

Definition 1.1: A smooth function f : R2n → R2m is holomorphic if and only if its

differential commutes with the almost complex structures on R2n and R2m. In other words,

dfu : TuR2n → Tf(u)R2m is C-linear, where we identify TuR2n ≃ R2n ≃ Cn.

In other words, when f is holomorphic, the matrix 1.2 reduces toJC(f) 0

0 J̄C(f)


with JC(f) = ( ∂fi∂zj

)i,j being the complex Jacobian. In this case we conclude that det(JC(f))
2 =

det(JR(f))

Remark : There is an endomorphism on R2n which sends (xi, yi) → (−yi, xi), known as an almost

complex structure.

We now list some important properties of holomorphic functions.

Theorem 1.2 (Properties of holomorphic functions):

• Compositions of holomorphic functions are holomorphic

• If f is holomorphic, then fdz is closed (resp. in the multivariable case)

• (Cauchy’s integral formula) If f is holomorphic on U and D is a disk contained

in U , then f(z0) = 1
2iπ

∫
∂D

f(z)
z−z0 dz for any z0 ∈ Do, in the one-variable case. In

the multivariable case, we have f(z1, z2, ..., zn) =
1

2iπ

n ∫
Λ
f(ζ) dζ1)

ζ1−z1 ...
dζn)
ζn−zn dz for any

z0 ∈ Do, where Λ is a product of circles.

• As a corollary to the Cauchy Integral formula, we have that every holomorphic func-

tion is locally analytic, i.e. expressible as a power series.

• Maximum principle: If f is holomorphic on an open U and |f | admits a local maximum

on U , then f is locally constant around it.

• Zeros are isolated: If f vanishes on an open subset of U , then it is identically zero.

One way to prove the Cauchy integral formula uses Stokes’ theorem.
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Theorem 1.3 (Stokes’ theorem): Given a smooth n − 1 form ω on an n-dimensional

smooth manifold with boundary M , we have that
∫
M
dω =

∫
∂M

ω

Another useful fact is that the operator ∂
∂z̄ is locally exact. This is a sort of holomorphic Poincare

lemma and is important, as it makes the maps in the Dolbeault resolution exact.

Theorem 1.4 (Local exactness of ∂̄): If f is some Ck function on an open set U of C,

then there exists some Ck function g such that, locally, ∂g∂z̄ = f .

Proof. This can be shown by considering g(z) = 1
2iπ

∫
C
f(ζ)
ζ−z dζ ∧ dζ̄
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2 Complex Manifolds

Now we move on to defining complex manifolds. These are spaces which have holomorphic atlases:

Definition 2.1 (Complex manifold): A complex manifold X is a smooth manifold of

even dimension such that the transition maps are not only smooth, but holomorphic as

functions on open subsets of Cn.

Using this definition, the holomorphic functions on a complex manifold are defined as functions

which become holomorphic when precomposed with the trivializations, i.e. if ϕ : U ≃ U ′ ⊆ Cn is

a local trivialization and f : X → C, then we require that f |U ◦ ϕ−1 : U ′ → C is holomorphic.

Remark : By the maximum principle, any holomorphic function on a compact connected complex

manifold is constant. This also implies that the equivalent of the Whitney embedding theorem

fails for complex manifolds, as compact complex manifolds cannot be embedded in Cn, since the

projection maps are holomorphic and nonconstant.

The data of the open cover and holomorphic transition maps is called a complex structure. This

should not be confused with an almost complex structure, which is an endomorphism of the

tangent bundle whose square is −1, to be defined in the next section. However, every complex

manifold carries with it an associated almost complex structure, and the converse question has an

answer in the Newlander-Nirenber theorem.

2.1 The almost complex structure on a complex manifold

To show the existence of an almost complex structure on X, we first define a canonical almost

complex structure on R2n = Cn, give it to the patches of X and then glue them together.

Take the canonical almost complex structure on Cn = R2n sending

(x1, y1, ..., xn, yn) 7→ (−y1, x1, ...,−yn, xn)

Now define I : TCn → TCn to be the induced almost complex structure on the (smooth) tangent

bundle of Cn by using the identifications TxCn ≃ Cn.

If ϕ : U → Cn, ψ : V → Cn are local trivializations of some U, V in a cover forming a complex

structure on X, then the transition maps τUV are holomorphic. Hence dϕ identifies TU with U×Cn

and similarly with V , and does so in such a way that, at a given point x, the holomorphic map

dτUV is C−linear.

Now we can give almost complex structures JU ∈ End(TU ) and J
V ∈ End(TV ) along the maps dϕ

and dψ. More precisely, JU = dϕ−1 ◦ I ◦ dϕ, JV = dψ−1 ◦ I ◦ dψ. These glue together along U ∩ V

for the following reason: on U ∩V , dϕ = dτUV ◦dψ and hence JU = dψ−1◦dτUV −1◦I ◦dτUV ◦dψ =

dψ−1 ◦ I ◦ dψ = JV since by definition 1.1, the holomorphicity of τUV means that dτUV commutes
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with I.

All in all, the separate IU ’s glue together to form J : TX → TX with J2 = −1, which is the almost

complex structure on the tangent bundle of X.

2.2 The holomorphic tangent bundle

We will define the holomorphic tangent bundle associated to a complex manifold X.

Firstly, let’s remind ourselves of the smooth tangent bundle TX,R associated to a smooth manifold

X (I omitted the subscript R in the previous section to simplify notation). This can be defined in

a variety of ways: jets, derivations on the algebra of smooth functions, or most conveniently for

our purposes, using a cocycle.

One way to do this is to define TX =
∐
p∈X TpX where TpX consists of the derivations at the

point p ∈ X. This is a vector bundle over X by projecting a derivation at p to p since each TpX

is isomorphic to Rk. Consider a smooth structure for X consisting of an open cover {Ui}. Then

π−1(Ui) =
∐
p∈Ui

TpX ≃ Ui×Rk via dϕUi
, where ϕUi

: Ui ≃ Rk, i.e. TpX = TpUi ≃ TϕUi
pRk ≃ Rk.

Looking more carefully, the cocycle associated to this vector bundle consists of the differentials of

the transition maps which are exactly the Jacobian matrices ψij = d(ϕjϕ
−1
i ), which means that

we can construct

TX,R =
∐

Ui × Rk/ ∼,

where (x, v) ∼ (x, JR(τij)x(v)) for x ∈ Ui ∩ Uj . In other words, we get a vector bundle that is

trivial over the open sets Ui. However, we can do the exact same thing, replacing R with C, smooth

functions with holomorphic functions and the real Jacobian with the complex one ∂fk

∂zj to produce

the holomorphic tangent bundle.

Definition 2.2 (Holomorphic tangent bundle): The holomorphic tangent bundle TX

associated to a complex manifold X is the complex vector bundle associated to the cocycle

given by the complex Jacobians of the transition maps.

TX =
∐

Ui × Cn/ ∼

It is also useful to have a more direct identification between TwCn and Cn. This can be done

by defining TwCn as the complex-valued algebra of point-derivations on the complex algebra of

holomorphic functions, which can be shown to be generated by the ∂
∂zi

as a complex vector space.

Here’s a sketch of how this goes in the one variable case: if w ∈ C is a point and D is a point-

derivation at w, then Df = D̃u+iD̃v where by abuse of notation we put f as the germ of f = u+iv

at w and D̃ is the induced real point-derivation on the functions u, v : R2 → R. But the real point

derivations are generated by ∂
∂x |w,

∂
∂y |w and so we have D̃ = α ∂

∂x |w+β
∂
∂y |w for some α, β ∈ R. But

the holomorphicity of f means, using the Cauchy-Riemann equations, that ∂u
∂x = ∂v

∂y ,
∂u
∂y = − ∂v

∂x .
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Plugging this in, we get that

Df = (α+ iβ)(
∂u

∂x
|w − i

∂u

∂y
|w),

whereas ∂f
∂z = ∂u

∂x |w − i∂u∂y |w, so we see that D = (α+ iβ) ∂∂z . In other words, the derivations at the

point w are generated by ∂
∂z as a complex vector space.

2.3 Comparing the holomorphic and smooth tangent bundles

The relationship between the differentiable and holomorphic vector bundles is the following: let

TX,R be the differentiable vector bundle. This acquires a structure as a complex vector space

induced by the almost complex structure J . Then we can complexify it: TX,R ⊗C and we further

have an inclusion TX ⊂ TX,R⊗C, by equation 1.1. (Beware: the complexified differentiable tangent

bundle has two almost complex structures, one given by J ⊗ Id and one given by i. We are using

the first one). The operator J has two eigenspaces corresponding to ±i and if we denote them by

T 1,0
X and T 0,1

X , we get the splitting

TX,R ⊗ C = T 1,0
X ⊕ T 0,1

X

By linear algebra, T 1,0
X = {u − iJu|u ∈ TX,R}, T 0,1

X = {u + iJu|u ∈ TX,R}. Locally, i.e. when

X = Cn, the real tangent bundle is generated by ∂
∂xj

and ∂
∂yj

. Hence, T 1,0
X is generated by

∂

∂xj
− iJ

∂

∂xj
= 2

∂

∂zj
,
∂

∂yj
− iJ

∂

∂yj
= 2i

∂

∂zj

Similarly, T 0,1
X is generated by ∂

∂zj
, i.e. T 1,0

X = T 0,1
X . Since the holomorphic tangent bundle is also

locally generated by ∂
∂zj

, we can identify the holomorphic tangent bundle TX and T 1,0
X as complex

vector bundles.

Dualizing everything, we get the decomposition

ΩX,R ⊗ C = ΩX,C = Ω1,0
X ⊕ Ω0,1

X

of the complexified differential forms (not the holomorphic ones!) and more generally

ΩkX,C =
∧k

ΩX,C =
⊕
p+q=k

Ωp,qX

with Ωp,qX =
∧p

Ω1,0
X ⊕

∧q
Ω0,1
X . Note that this is a complex vector bundle, and not a holomorphic

one.

In local coordinates, Ω1,0
X is generated by the dzj , whereas Ω

0,1
X is generated by the dz̄j . Hence, a

basis for Ωp,qX is given by {dzi1 ∧ ... ∧ dzip ∧ dzj1 ∧ ... ∧ dzjq | i1 < ... < ip, j1 < ... < jq}.

2.4 The operators ∂ and ∂

The complexified exterior differential on complex-valued differential forms sends a form of type

(p, q) to a sum of forms of types (p, q + 1) and (p + 1, q). The first one we denote by ∂ and
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the second by ∂. Hence we have d = ∂ + ∂. On 0-forms, this looks as follows: let f be some

differentiable function X → C. Then df =
∑ ∂f

∂zj
dzj +

∑ ∂f
∂z̄j

dz̄j = ∂f + ∂f . More generally, one

can extend this, using the Leibniz rule, to all forms, by the formula

dα =
∑

dαI,JdzI ∧ dz̄J =
∑ ∂αI,J

∂zj
dzj ∧ dzI ∧ dz̄J +

∑ ∂αI,J
∂z̄j

dz̄j ∧ dzI ∧ dz̄J

Proposition 2.3:

• ∂ and ∂ obey the Leibniz rule

• ∂2 = ∂
2
= ∂∂ + ∂∂ = 0

Proof. This follows from the corresponding property of d and looking at the bidegree.

The operator ∂ is a map C∞(U,Ωp,qX ) → C∞(U,Ωp,q+1
X ) (and similarly for ∂). By the previous

propposition, for any p these form a chain complex called the Dolbeault complex

0 → C∞(U,Ωp,0X ) → C∞(U,Ωp,1X ) → ...

With U = X, the cohomology groups of this complex are known as the Dolbeault cohomology

groups, denoted Hq(C∞(X,Ωp,−X )) = Hp,q(X).

One can ask: since we have a decomposition

C∞(X,ΩkX,C) =
⊕
p+q=k

C∞(X,Ωp,qX ),

does the same hold when we pass to cohomology, i.e. Hk(X,C) =
⊕
Hp,q(X)? This does not hold

always, and is the main topic of this note. The Hodge decomposition theorem, which we will

prove, says that it holds for the class of all Kähler manifolds.

Now we show a Poincare lemma for the operator ∂.

Theorem 2.4 (Exactness of Dolbeault resolution): Any ∂ closed form α ∈

C∞(U,Ωp,qX ) is locally exact.

Proof. First reduce to the case where α is of type (0, q) as follows: write α =
∑
αI,JdzI ∧ dz̄J .

Hence

0 = ∂α =
∑ ∂αI,J

∂z̄j
zj ∧ dzI ∧ dz̄J

Now this means that each αI =
∑
αI,Jdz̄J is ∂-closed. If we have proved the case for forms of

type (0, q), then locally αI = ∂βI and then α = ±∂(
∑
dzI ∧ βI). Hence we only need to prove the

case where p = 0, which follows by induction from theorem 1.4

Let’s generalize the previous section to an arbitrary rank k complex vector bundle E over X. Let

A0,q(E) = C∞(X,E⊗Ω0,q
X ), the differential k-forms with coefficients in E. Locally on a trivializing
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open set U , an element α in A0,q(E) i.e. a section of E⊗Ω0,q
X will look like a k-tuple of (0, q)-forms

i.e. α = (α1, ..., αk). If we define ∂Uα by (∂α1, ..., ∂αk), then all of these ∂U glue together, since

the transition matrices have holomorphic coefficients1, forming an exterior derivative

∂E : A0,q(E) → A0,q+1(E)

Definition 2.5 (Dolbeault complex of a vector bundle): The Dolbeault complex of a

vector bundle is the complex

0 → A0,0(E)
∂E−−→ A0,1(E) → ...

1For more details, consult Voisin, Lemma 2.33
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3 Kähler manifolds, differential operators

In this section we introduce a large class of complex manifolds for which we will prove the Hodge

decomposition, namely the Kähler manifolds.

3.1 Hermitian structures and Kähler forms

Let V be a complex vector space and VR be the underlying real vector space and VC = VR ⊗ C its

complexification. Further, let W = Hom(V,R) be the dual of V and define WR and WC similarly.

These vector spaces have an almost complex structure and split as before:

VC = V 1,0 ⊕ V 0,1,WC =W 1,0 ⊕W 0,1

The second exterior power splits as∧2
WC =

∧2
W 1,0 ⊕ (W 1,0 ∧W 0,1)⊕

∧2
W 0,1

We denote the middle part as W 1,1 and by W 1,1
R its real part.

A Hermitian form on V is a map V × V → C that is C-linear in the first variable, C-antilinear in

the second and satisfies h(u, v) = h(v, u). There is a correspondence between real (1,1)-forms and

Hermitian forms, as the following proposition shows.

Proposition 3.1 (Hermitian forms and 1-1 forms): There is a bijection between Her-

mitian forms on V and real (1,1) forms on V given by h 7→ −Im(h) and ω 7→ h with

h(u, v) = ω(u, Jv)− iω(u, v)

Proof. Since h is Hermitian, we see that ω = −Im(h) is alternating. It is of type (1, 1) since

ω(u − iJu, v − iJv) = 0 (since h is Hermitian) i.e. it vanishes on pairs of elements of V 1,0 and

similarly with V 0,1.

To show the converse, put h(u, v) = ω(u, Jv)− iω(u, v). Then h(u, Jv) = ω(u,−v)− iω(u, Jv) =

−ω(u, v) − iω(u, Jv) = −ih(u, v). Since ω is of type (1, 1), we have that ω(u, Jv) = −ω(Ju, v)

using the fact that 0 = ω(u − iJu, v − iJv) = [ω(u, v) − ω(Ju, Jv)] − i[ω(u, Jv) + ω(Ju, v)] and

looking at the imaginary part. Now, using the fact that ω is alternating, we have

h(v, u) = ω(v, Ju)− iω(v, u) = ω(u, Jv) + iω(u, v) = h(u, v)

In other words, h is Hermitian, as desired.

In coordinates, fixing a basis z1, .., zn of V , denote h(zi, zj) = hij . Then if u = (u1, ..., un), v =

(v1, ..., vn), we have h(u, v) =
∑
hijuivj and can thus write

h =
∑

hijz
∗
i ⊗ zj

∗

13



Now,

ω(u, v) = −Im(h(u, v)) =
−1

2i
(h(u, v)− h(u, v)) =

i

2
(h(u, v)− h(v, u))

i.e.

ω(u, v) =
i

2

∑
hij(uivj − viuj)

which means we can identify

w =
i

2

∑
hijz

∗
i ∧ z∗j

since [z∗i ∧ z∗j ](u, v) = uivj − viuj .

Definition 3.2 (Hermitian metric and Kähler forms): A Hermitian metric on a

complex manifold X is a collection hx of Hermitian forms on the holomorphic tangent

space TxX. To such a collection of metrics we can associate the real 2-form of type

ω = −Im(h) ∈ Ω2
X,R ∩ Ω1,1

X , called the fundamental form. This form is called Kähler if

it is closed.

The canonical example of a Kähler form is the 2-form associated to the standard inner product

on Cn, namely the form ω = i
2

∑
dzi ∧ dzi. In fact, the fundamental form of a Kähler manifold

locally behaves approximately like the associated form of the standard Hermitian metric2.

Moreover, the fundamental form is related to the volume form of a complex manifold. Given a

complex manifold X with a Hermitian metric h, let e1, ..., en ∈ TxX be an orthonormal basis for hx

over C. Then e1, Je1, ..., en, Jen is orthonormal for gx = Re(hx), the Riemannian metric. Denote

the dual basis for ΩX,x,R to be dx1, dy1, ..., dxn, dyn and put dzi = dxi + idyi. We have

wx =
i

2

∑
dzi ∧ dzi

and hence
wnx
n!

= (
i

2
)ndz1 ∧ dz1... ∧ dzn ∧ dzn = dx1 ∧ dy1... ∧ dxn ∧ dyn

and so wn/n! is a volume form. In particular,

Vol(X) =

∫
X

wn

n!
> 0

If ω is Kähler, then ωk is closed for all k, so it defines a nontrivial De Rham cohomology class in

H2k(X,R) for the following reason: if ωk = dη, then ωn = d(ωn−k ∧ η) and by Stokes’ theorem

we will get that Vol(X) = 0, which is impossible. Hence, if a manifold is Kähler, it has to have

nontrivial de Rham cohomology groups in all even dimensions.

3.2 Projective space and the Fubini-Study metric

In this section, we show that any projective manifold is Kähler, using the Fubini-Study metric3.

2See Proposition 3.14 in Voisin
3Note that the Fubini-Study metric can also be defined as the Chern form associated to the tautological line

bundle over projective space - see Voisin 3.3.1

14



Recall that complex projective space Pn has an open cover consisting of Ui = {(w0 : ... : wn)|zi ̸=

0} ≃ Cn sending (w0 : ... : wn) 7→ (w0

wi
, ..., wn

wi
) (omitting the i-th component which is just 1). On

this patch, define

ωi =
i

2π
∂∂log(

∑
|wj
wi

|2)

Under the trivialization ϕi : Ui → Cn, this corresponds to

i

2π
∂∂log(1 +

∑
|zk|2)

We want to show that these glue to a global closed form on Pn. But

log(
∑

|wj
wi

|2) = log(|wk
wi

|2
∑

|wj
wk

|2)) = log(|wk
wi

|2) + log(
∑

|wj
wk

|2)

So to show ωi and ωk agree on Uk ∩ Ui, we need to show that

∂∂log(|wk
wi

|2) = 0

When i < k, on Ui the function wk/wi corresponds to the k−th coordinate on Cn under ϕi. But

∂∂log(|z|2) = ∂(
1

zz̄
∂(zz̄)) = ∂(

zdz̄

zz̄
) = ∂(

dz̄

z̄
) = 0

Hence the ωi glue together to a global form ω. Moreover, it is clear that dω = ∂ω = ∂ω = 0, using

the fact that ∂2 = ∂
2
= 0 and ∂∂ = −∂∂, so ω is closed. Moreover, wi = wi using the fact that

∂∂ = ∂∂ = −∂∂, hence ω is real.

To show that ω arises from a metric, we need to show that its matrix is positive semidefinite.

However,

∂∂(1 +
∑

|zk|2) =
∑
dzidz̄i

1 +
∑

|zi|2
− (

∑
z̄idzi) ∧ (

∑
zidz̄i)

(1 +
∑

|zi|2)2
=

1

(1 +
∑

|zi|2)2
∑

hijdzidz̄j

Now hij = (1 +
∑

|zi|2)δij − z̄izj which is positive by using the Cauchy-Schwarz inequality:

xt(hij)x̄ = xtIx̄+ xtztz̄x− xtz̄ztx̄ = (x, x) + (x, x)(z, z)− |(x, z)|2 > 0

This completes the demonstration that projective space admits a Kähler metric.

Remark : The ∂∂ is not coincidental: after showing the Hodge decomposition for Kähler manifolds,

one can prove the so-called ∂∂-lemma, which says that any d-closed form is locally ∂∂-exact.

Remark : Any complex submanifold of a Kähler manifold inherits the Hermitian metric and more-

over inherits a Kähler form, and hence is Kähler. We have thus shown that any projective manifold

is Kähler.
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4 Sheaf cohomology

In this section we briefly recall some homological algebra and sheaf theory. We will explain how

vector bundles correspond to locally free sheaves and also define the notion of sheaf cohomology.

4.1 Sheaves

The notion of a sheaf is a way to package all the local information of a geometric object. More

precisely, a sheaf F assigns to each open subset U of a topological space X some object F(U)(a

set, group, ring, etc.). But it does not do so arbitrarily, but consistent with the structure of the

topological space, i.e. whenever we have U ⊂ V , there is a restriction map F(V ) → F(U). A

canonical example of a sheaf is the sheaf of sections of a vector bundle, and there the notion of

restriction is very natural: if we have a section s : V → E, then clearly restricting to U will give us

another section, this time over U . It is for this reason that an element of F(X) is called a global

section.

This data, with some extra conditions, defines what is called a presheaf. It can be described as

a functor O(X)opp → Set, where O(X) is the category of open subsets of X, with arrows being

inclusion maps. A morphism of presheaves is a natural transformation between two such functors.

However, a sheaf is something more: it allows one to glue together sections defined on separate

subsets, provided they agree on the intersections. This is called the gluing property:

Definition 4.1 (Sheaf gluing property): Given sections si ∈ F(Ui) with Ui an open

cover of U such that si|Ui∩Uj = sj |Ui∩Uj , then there exists a unique global section s ∈ F(U)

with s|Ui
= si.

In other words, a global section is given precisely by a coherent collection of local sections.

Definition 4.2 (Sheaf): A sheaf abelian groups on a topological space X is a presheaf

F : Oopp → Ab satisfying the sheaf gluing property and the identity property, i.e. the

property that if we have two global sections s, s′ ∈ F(X) that agree on an open cover of X

i.e. s|U = s′|U , then s = s′.

4.2 Vector bundles and locally free sheaves

Fundamental example: Over any complex manifold X, consider the trivial line bundle X × C.

Then the sheaf of holomorphic sections of this line bundle consists of precisely the holomorphic

functions on X. This sheaf is called the structure sheaf and is frequently denoted OX . Note that,

locally, any holomorphic vector bundle E looks like EU ≃ X × Cn and so a holomorphic section

s ∈ Γ(U,E) can be multiplied pointwise by a holomorphic function: f · s(x) = f(x) · s(x), where
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the multiplication comes from the structure of EU as a complex vector space. Another way to say

this is that the sheaf of sections of E is a sheaf of OX -modules! Moreover, the sheaf of sections of

a holomorphic vector bundle locally looks like On
X , where n is the rank of the vector bundle, i.e.

it is locally free. This motivates the following:

Definition 4.3 (Locally free sheaves): Let A be a sheaf of rings over X (i.e. the sheaf of

continous, differentiable, holomorphic functions on a space etc.). Then a sheaf F is called a

sheaf of A-modules if each F(U) admits the structure of an A(U)-module, compatible with

the restriction maps. F is called a sheaf of free modules if there is a cover {U} such that

F(U) ≃ A(U)n for an integer n.

We have shown that the sheaf of (continous, smooth, holomorphic etc.) sections of a vector bundle

give examples of locally free sheaves. We now state a converse result, establishing a precise bijection

between vector bundles and locally free sheaves.

Theorem 4.4 (Locally free sheaves and vector bundles): Let A be a sheaf of functions

and let E be a vector bundle. Then associating to E its sheaf of sections gives an equivalence

between the locally free sheaves of A-modules and vector bundles.

Proof. We define the inverse map from locally free sheaves to vector bundles as follows: given a

locally free sheaf F , there is an open cover {U} and a natural isomorphism τU : F(U) ≃ A(U)n.

Hence, on an intersection U ∩V, we get an isomorphism τV ◦τ−1
U = τUV : A(U ∩V )n ≃ A(U ∩V )n.

This isomorphism can be described by a matrix MUV with entries in A(U ∩ V ) such that they

satisfy the cocycle condition:

MUVMVW =MUW

This allows us to construct a vector bundle that is trivial over the open sets U and with transition

maps given by the matrices, i.e. E =
∐
U × Fn/ ∼ (with F being the real or complex numbers)

and (x, v) ∼ (x,w) iff w = MUV v and x ∈ U ∩ V . The cocycle condition is in fact necessary for

this to be a well-defined equivalence relation.

4.3 Stalks and the sheaf associated to a presheaf

Now we move on to defining stalks, which track the local behaviour of sections on the microscopic

level at a point p.

Definition 4.5 (Stalks): The stalk of F at the point p is defined as the direct limit:

Fp = lim−→
p∈U

F(U)
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The direct limit can be constructed as a quotient of the coproduct
∐

F(U). What we are really

doing is identifying two sections around p if they agree somewhere around p, in exact analogy with

germs in differential geometry. In fact, knowing the microscopic behaviour of the sheaf at every

point p can be used to reconstruct the whole sheaf as follows: one can construct the space of stalks∐
Fp which is an etale space over X and one can recover F as the sheaf of sections of this etale

space.

Note that the direct limit is functorial, so a morphism ϕ : F → G induces a map ϕp : Fp → Gp.

We have defined sheaves as special types of presheaves. However, every presheaf can be extended

to a sheaf, which is called the sheafification of the presheaf (this is a free construction like any

other in math and unsurprisingly forms a free-forgetful adjunction).

Definition 4.6 (Sheafification): Given a presheaf F over X, the sheafification F+ is

defined as follows:

F+(U) = {(fp) ∈
∏
p∈U

Fp| for every p ∈ U, there exists a neighbourhood V ⊂ U

and a section s ∈ F(V )such that sq = fq,∀q ∈ V }

The moral of the story is: collect all the stalks at points in U which locally arise as germs of

sections in the presheaf. In this way, one generates new, glued sections which did not exist in the

original presheaf, but which are needed for the presheaf to become a sheaf. There are other ways

of defining the sheafification4, but regardless of the construction, it is the universal sheaf in which

a presheaf embeds. It is immediate also by the definition that the stalks of a presheaf and its

associated sheaf are the same: using the same notation as the definition, the germ of any f on U

can be restricted to some V ⊂ U where it is represented by the section s ∈ F(V ) and which in the

stalk becomes just sp ∈ Fp. Hence F+
p = Fp.

Now we need to talk about how the category of sheaves over X forms what is called an abelian

category, i.e. a category which has kernels, images and can talk about injectiveness, surjectiveness

and exactness of short exact sequences. We begin with kernels.

Definition 4.7 (Injectivity and surjectivity of a morphism): A morphism of sheaves

ϕ : F → G is called injective (resp. surjective) if it is injective (resp. surjective) at each

point, ϕp : Fp → Gp.

Proposition 4.8 (Presheaf kernel is sheaf): The kernel presheaf ker(ϕ) sending U 7→

ker(ϕU ) is actually a sheaf and is equal to 0 if and only if ϕ is injective.

Proof. Clearly it is a presheaf. Furthermore, if si ∈ ker(ϕ)Ui
are sections which are compatible,

4See Voisin Lemma 4.4, for example
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then there is a global section s ∈ FU which restricts to si. Then ϕUs ∈ GU restrics to 0 on an open

cover of U , so must be 0.

For the second part, note that if ϕ is injective, then the stalk of the kernel sheaf at any point is

the kernel of ϕx : Fx → Gx, which is 0. Hence all the stalks are zero and the sheaf is also zero.

The corresponding fact does not hold of images. However, modifying the situation by passing to

the sheaf associated to the presheaf image, we have the follwoing:

Proposition 4.9 (Image sheaf): The sheafification of the image presheaf im(ϕ) is equal

to G if and only if ϕ is surjective.

Proof. Firstly, we have a sheaf map j : im(ϕ)+ → G by the universal property of the sheaf

associated to a presheaf. But now, since the stalks of the sheafification are the same as the stalks

of the original presheaf, j is injective, as it is already injective on the presheaf level. If ϕ is

surjective, by the same reasoning j is surjective as well. Hence, for σ ∈ GU there is an open cover

og V and sections τV of im(ϕ)+ such that jV τV = σV . Now

jU∩V (τV )|U∩V = (jV τV )|U∩V = (jUτU )|U∩V = jU∩V (τU )|U∩V

But j is injective, so we must have that (τV )|U∩V = (τU )|U∩V , which by the gluing property

implies we have a global section τ which maps to σ and hence j is an isomorphism. The converse

is immediate.

Fundamental example: If we denote by O∗
X the sheaf of invertible holomorphic maps, where

the groups are multiplicative, then the exponential map provides us with a locally surjective map

OX
exp−−→ O∗

X

i.e. a surjective morphism of sheaves with kernel the locally constant functions. However, when we

pass to global sections, the exponential map is no longer surjective. The main idea behind sheaf

cohomology is to fix this failure of exactness of the global sections functor by introducing the sheaf

cohomology groups. In other words, on the level of sheaves we have the short exact exponential

sequence (we will define this precisely in a moment)

0 → 2iπZ → OX
exp−−→ O∗

X → 0

which will give us a long exact sequence

0 → H0(2iπZ) → H0(OX)
exp−−→ H0(O∗

X) → H1(X,Z) → H1(X,OX) → H1(X,O∗
X) → ...
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Definition 4.10 (Complexes, exact sequences of sheaves and resolutions): A se-

quence

F ϕ−→ G ψ−→ H

is called exact if ker(ψ) = im(ϕ).

A sequence

...→ F i di−→ F i+1 di+1

−−−→ ...

is called a complex if di+1 ◦ di = 0,∀i ∈ Z.

Finally, a resolution of a sheaf F is an exact comples of sheaves {F i, di, i ∈ N} with

kerd0 ≃ F .

4.4 Examples of resolutions

The De Rham resolution Let X be a C∞ manifold and let Ak(X) be the sheaf of sections of

the k-the exterior power of the cotangent bundle, i.e. the sheaf of differential k-forms. Then the

exterior derivative gives us a complex

0 → A0 d−→ A1 d−→ ...

where A0 is the sheaf of smooth functions onX. The kernel of d0 is precisely the constant functions,

i.e. the constant sheaf R, and the Poincare lemma shows us that

Ak d−→ Ak+1 d−→ Ak+2

is locally exact, i.e. the sequence is an exact sequence of sheaves. Hence the De Rham complex is

a resolution of the constant sheaf R.

The Dolbeault resolution In a similar way, when X is a complex manifold and E a holomorphic

vector bundle, we showed in 2.4 that a Poincare-type lemma holds for the sheaf of smooth sections

of the bundle A0,q(E) = C∞(−,Ω0,q
X ⊗ E) and hence we have a resolution

0 → A0,0(E)
∂−→ A0,1(E)

∂−→ ...

of the sheaf E of holomorphic sections of E.

4.5 A bit of homological algebra

Our ultimate aim is to calculate the right derived functors of the left exact global sections functor

SheavesX → Ab. In our remarks on kernels and images, we have (almost) shown that the category

of sheaves on X is an abelian category, which also has enough injective objects.

In such a context, to calculate right derived functors, one takes an injective resolution of the chosen

object - these resolutions have the property that any two are related by a chain homotopy, and

moreover if ϕ : A → B is a map and A → I ·, B → J · are injective resolutions, there is a unique
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(up to chain homotopy) extension of ϕ to a map of complexes I · → J ·5. We have the following

theorem:

Theorem 4.11 (Calculating right derived functors): There is a universal δ-functor

RiF with the property that R0F = F and to every SES

0 → A→ B → C → 0

we have a LES

0 → FA→ FB → FC → R1FA→ R1FB → R1FC → ...

Proof. For a full proof, see Voisin or Weibel. The idea is the following: by the preceding remarks,

RiF (A) = Hi(FI ·), is well-defined. The idea then is to take A → I ·, C → J · and show that

B → (I ⊕ J)· is an injective resolution. Applying the additive functor F and using the snake

lemma after taking cohomology provides us with the result.

So we can compute the right derived functors using injective resolutions. However, injective res-

olutions are usually hard to find, and in fact we can replace them with arbitrary acyclic objects,

where an object M is acyclic if RiF (M) = 0 for i > 0 (from the construction, we immediately see

that injectives are acyclic).

Theorem 4.12 (Derived functors using acyclic objects): Right derived functors can

be calculated using acyclic resolutions A→M ·, i.e. RiF (A) = Hi(FM ·).

Proof. The idea is to use dimension shifting.

4.6 Sheaf cohomology

Now we are ready to define sheaf cohomology. The left exact functor we are interested in is the

global sections functor, and we can calculate it using acyclic resolutions of a sheaf. Note that the

category of sheaves on X has enough injectives, since the category of abelian groups has enough

injectives and we can embed F into the sheaf U 7→
⊕
Ix, where Ix is an injective group containing

Fx.

Definition 4.13 (Sheaf cohomology): The sheaf cohomology Hi(X,F) is defined as the

i-th derived functor of the global sections functor Γ.

Flasque and fine sheaves: There are two important classes of acyclic sheaves: one consists of

the flasque sheaves, i.e. the sheaves such that the restriction maps are surjective. Another class

5For more on the homological algebra, consult Weibel
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is the fine sheaves, i.e. the sheaves which admit a partition of unity. For a proof that these are

acyclic, see Voisin, section 4.3.1

In particular, for the case of differentiable manifolds, where we have partitions of unity, the sheaf

cohomology of the constant sheaf R computes the De Rham cohomology:

Proposition 4.14 (De Rham cohomology): The De Rham resolution computes the De

Rham cohomology, i.e. Hi(X,R) = Hi
DR(X,R).

Similarly, the Dolbeault resolution computes the Dolbeault cohomology, as we would expect.
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5 Hodge theory of Kähler manifolds

We conclude with a section proving the Hodge decomposition for compact Kähler manifolds. To

do this, we first define the Hodge star operator, which will allow us to construct duals, or adjoints,

of the operators d, ∂ and ∂. We then define Laplacians and harmonic forms, and show that any

cohomology class can be represented uniquely by an element of the vector space of harmonic forms.

Then, we prove the Kähler identities, which allow us to show that the harmonic k-forms split into

a sum of the harmonic (p, q)−forms, and then we conclude by using the isomorphism between k-th

cohomology and the k-th harmonic forms.

5.1 The Hodge star and adjoints on smooth manifolds

Let X be a compact smooth manifold with a Riemannian metric. This induces a metric on the

differential forms as follows: if e1, ..., en is an orthonormal basis for TX,x, then the e∗i1 ∧ ... ∧ e∗ik
form an orthonormal basis for ΩkX,x.

Definition 5.1 (Hodge star): The Hodge ∗ operator is the unique operator ΩkX → Ωn−kX

such that

α ∧ ∗β = (α, β)Vol

where α, β ∈ Ak(X) are sections of ΩkX and ∗ is induced from the operator on bundles given

by composing a section with ∗.

The existence of the Hodge star operator is guaranteed by the following reasoning:

Firstly, we have the isomorphism

Ωn−kX,x ≃ Hom(ΩkX,x,Ω
n
X,x)

given by the right wedge product. This is an isomorphism, as the map is clearly injective and

also the two vector spaces have the same dimension. Note that when the manifold is Riemannian,

it has a volume form so ΩnX,x is canonically isomorphic to R. Moreover, the metric gives us an

isomorphism

ΩkX,x ≃ Hom(ΩkX,x,R)

given by ω 7→ (−, ω). Composing these isomorphism we have:

ΩkX,x ≃ Hom(ΩkX,x,R) ≃ Hom(ΩkX,x,Ω
n
X,x) ≃ Ωn−kX,x

Denoting this composite map ∗ and unraveling the definitions, we see that for a section β ∈ Ak(X),

∗β is the element in An−k(X) such that wedging with it produces the same map as using the metric:

− ∧ ∗β = (−, β)Vol

.
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Definition 5.2 (L2 metric): On elements α, β ∈ Ak(X) we have the L2 metric defined by

(α, β)L2 =

∫
X

(α, β)Vol,

where x 7→ (αx, βx)x is a function of x.

Immediately from the definition we see that (α, β)L2 =
∫
X
α ∧ ∗β.

Proposition 5.3: The Hodge star operator satisfies ∗2 = (−1)k(n−k).

Proof. ∗ preserves metrics, so we have

αx ∧ ∗βx = (αx, βx)xVolx = (∗αx, ∗βx)xVolx = ∗βx ∧ ∗ ∗ αx = (−1)k(n−k) ∗ ∗αx ∧ ∗βx

Let d : Ak(X) → Ak+1(X) be the exterior derivative and define d∗ = (−1)k ∗−1 ◦d ◦ ∗ =

(−1)n(k+1)+1 ∗ ◦d ◦ ∗. This is called the adjoint to d for the following reason:

Proposition 5.4 (Adjoint property): If X is compact or only compactly supported in-

tegration is allowed, then

(α, d∗β)L2 = (dα, β)L2

Proof. Let α ∈ Ak−1(X), β ∈ Ak(X). Then (dα, β)L2 =
∫
X
dα ∧ ∗β. However, d(α ∧ ∗β) =

dα ∧ ∗β + (−1)k−1α ∧ d ∗ β. Integrating over X and using Stokes’ theorem, we get

(dα, β)L2 = (−1)k
∫
X

α ∧ d ∗ β

But (α, d∗β)L2 =
∫
X
α ∧ ∗(−1)k ∗−1 d ∗ β = (−1)k

∫
X
α ∧ d ∗ β and so the two quantities are

equal.

5.2 The operators ∂ and ∂ on complex manifolds

The Hodge star operator was defined for smooth manifolds in the previous section. Now let X

be a compact complex manifold. We can extend the Riemannian metric to a Hermitian metric

on the complexified cotangent bundle and extend ∗ C-linearly to complex-valued forms. In local

coordinates, if

α =
∑

αI,JdzI ∧ dzJ , β =
∑

βI,JdzI ∧ dzJ

are in Ωp,qX , then their Hermitian product at x is equal to

(αx, βx)x =
∑

αI,J(x)βI,J(x)
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We then have the identity

(αx, βx)Volx = αx ∧ ∗βx

and the Hodge star takes a (p, q) form to an (n− p, n− q) form.

Recall that d = ∂ + ∂ on complex manifolds and since a complex manifold has underlying even

dimension, then (−1)n(k+1)+1 = −1 and we can define the duals of ∂ and ∂ to be ∂∗ = −∗∂∗, ∂∗ =

− ∗ ∂∗. These satisfy the same adjoint property as d:

Proposition 5.5: ∂∗ and ∂
∗
are formal adjoints of ∂ and ∂∗ respectively.

Proof. We show this for ∂, the other case being analogous. Firstly, if α is of type (p− 1, q) and β

of type (p, q) with n = p+ q beng the dimension of X as a complex manifold, then

(∂α, β)L2 =

∫
X

∂α ∧ ∗β

However, α ∧ ∗β is of type (n− 1, n) and hence ∂(α ∧ ∗β) = d(α ∧ ∗β). Now by Stokes’ theorem,

0 =

∫
X

d(α ∧ ∗β) =
∫
X

∂(α ∧ ∗β) = (∂α, β)L2 + (−1)p+q−1

∫
X

α ∧ ∂∗β (5.1)

But note that

(α, ∂∗β)L2 =

∫
X

α ∧ ∗∂∗β =

∫
X

α ∧ ∗− ∗ ∂ ∗ β = (−1)

∫
X

α ∧ ∗ ∗ ∂ ∗ β

The last equality comes from the fact that ∗ is a real operator. But ∂ ∗ β is a form of type

(n− p+ 1, n− q) on which ∗∗ acts as (−1)2n−p−q+1 = (−1)p+q+1 and hence

(α, ∂∗β)L2 = (−1)p+q
∫
X

α ∧ ∂∗β (5.2)

Combining (6.1) and (6.2) gives the result.

Remark : The preceding constructions can also be extended to the case of holomorphic vector

bundles with the operator ∂E as in the Dolbeault complex of a holomorphic vector bundle 2.5.

5.3 Laplacians, harmonic forms and cohomology

For any differential operator θ, e.g. d, ∂ or ∂ define its associated Laplacian as

∆θ = θθ∗ + θ∗θ

As a corollary of the adjunction properties 5.4 and 5.5 we have:

Corollary 5.6: (α,∆θβ)L2 = (θα, θβ)L2 + (θ∗α, θ∗β)L2 . In particular, (α,∆θα)L2 =

||θα||2 + ||θ∗α||2.

25



Definition 5.7 (Harmonic forms): A θ-harmonic form is a form α such that ∆θα = 0

Hence, by applying 5.6, we see that a form is θ-harmonic if and only if it is θ and θ∗-closed:

Corollary 5.8: ker∆θ = ker θ ∩ ker θ∗

Definition 5.9 (Vector space of harmonic forms): Define Hk
d (resp. Hk

∂
) to be the

space of all d (resp. ∂)-harmonic forms, and Hp,q
d (resp. Hp,q

∂
) the d (resp. ∂)-harmonic

forms of type (p, q).

Now we show that the De Rham cohomology groups are isomorphic to these harmonic vector

spaces, using a big theorem about elliptic differential operators which we quote without proof:

Theorem 5.10 (Big theorem on elliptic differential operators): Let P : E → F be

an EDO on a compact manifold. If E and F are of the same rank and are equipped with

metrics, then kerP is of finite dimension and there is an L2 orthogonal decomposition

C∞(E) = kerP ⊕ P ∗(C∞(F ),

where P ∗ is the formal adjoint of P .

We will apply this to the Laplacian ∆d, which is an elliptic differential operator of degree 2, which

is also self-adjoint: ∆ = ∆∗. In particular, we have

Ak(X) = Hk ⊕∆(Ak(X))

Now let’s see what happens when we pass to cohomology: let β be a closed form, β = α+∆γ with

α harmonic, i.e. β = α+ dd∗γ + d∗dγ. But now β, α and dd∗γ are all closed, hence d∗dγ is closed,

d∗dγ ∈ ker d ∩ im d∗. But 0 ≤ (d∗dγ, d∗dγ) = (dγ, dd∗dγ) = 0 and hence d∗dγ = 0. Hence β is

represented by a harmonic form modulo some exact form, and the map Hk → Hk(X) is surjective.

Conversely, to show injectivity, assume β is harmonic and exact. Then β ∈ ker d∗ ∩ im d and again

it must be 0. We conclude that:

Theorem 5.11: Let X be a compact oriented Riemannian manifold. Then the map

Hk → Hk(X)

is an isomorphism

Remark : Note that this statement applies to the real-valued De Rham cohomology when dealing

with the usual exterior derivative, but also works when we extend it C-linearly with complex-valued

De Rham cohomology.

We can apply the same idea to the Laplacian associated to ∂ to get the decomposition

C∞(X,Ωp,qX ) = Hp,q ⊕∆∂(C
∞(X,Ωp,qX ))
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Using the exact same reasoning, we get the following:

Theorem 5.12: Let X be a compact complex manifold with a Hermitian metric. Then the

map

Hp,q → Hp,q(X)

is an isomorphism. In particular, the Dolbeault cohomology groups have finite dimension.

5.4 The case of Kähler manifolds

Our aim now is to use the isomorphism between the harmonic and ordinary cohomology groups,

together with the decomposition Hk =
⊕

Hp,q to prove the Hodge decomposition theorem, the

final theorem in this note.

To do this, we will work entirely with compact Kähler manifolds (the decomposition theorem does

not necessarily hold for non-Kähler manifolds) and prove the so-called Kähler identities to establish

the equality between the different Laplacians acting on X.

5.4.1 The Kähler identities

Definition 5.13 (Lefschetz operator): Define the Lefschetz operator on complex differ-

ential forms

L : Ak
X → Ak+2

X

by α 7→ ω ∧ α, where ω is the Kähler form. Its formal dual is

Λ : Ak
X → Ak−2

X

where Λ = (−1)k ∗ L∗

The construction of the adjoint can be verified by seeing that

α ∧ ∗Λβ = (α,Λβ)Vol = (Lα, β)Vol = Lα ∧ ∗β = α ∧ ω ∧ ∗β

i.e. ∗Λ = L∗, or Λ = ∗−1L∗.

Proposition 5.14 (Kähler identities):

[Λ, ∂] = −i∂∗, [Λ, ∂] = i∂
∗

Proof. See Voisin, section 6.1.

Corollary 5.15 (Comparing the Laplacians): We have ∆∂ = ∆∂ = 1
2∆d
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Proof.

∆d = dd∗ + d∗d = (∂ + ∂)(∂∗ + ∂
∗
) + (∂∗ + ∂

∗
)(∂ + ∂) (5.3)

Notice that by the Kähler identities,

∂∗∂ = i[Λ, ∂]∂ = −i∂Λ∂

and similarly

∂∂∗ = i∂Λ∂

i.e.

∂∗∂ = −∂∂∗

Also, note that we have ∂∂ = −∂∂.

Expanding (6.3) we get

∆d = ∂∂∗+∂∂
∗
+∂∂∗+∂∂

∗
+∂∗∂+∂∗∂+∂

∗
∂+∂

∗
∂

Now, the gray bits are both 0 and we are left with

∆d = ∆∂ + ∂∂
∗
+ ∂

∗
∂

But ∂
∗
= −i[Λ, ∂] so we get

∆d = ∆∂ + ∂(−iΛ∂ + i∂Λ) + (−iΛ∂ + i∂Λ)∂ = ∆∂ + i∂[Λ, ∂] + i[Λ, ∂]∂ = 2∆∂

The other case is proved in exactly the same way.

Now, since ∆∂ is bihomogenous, i.e. keeps the bigrading the same, the same will apply to ∆d.

Hence, if we have a d-harmonic form α =
∑
αp,q, we deduce that each αp,q is d-harmonic. In other

words,

Theorem 5.16:

Hk =
⊕
p+q=k

Hp,q

Notice that Hp,q = Hq,p since if β is harmonic of type (p, q), then β is of type (q, p) and

∆∂β = ∆∂β = ∆∂β = 0

i.e. β is harmonic as well.

Now recall that by theorem 5.11 we have that

Hp,q ≃ Hp,q(X)

and

Hk ≃ Hk(X)
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This allows us to conclude:

Theorem 5.17 (Hodge decomposition): We have the decomposition

Hk(X,C) ≃
⊕
p+q=k

Hp,q(X)
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