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Overview

• Lagrangian torus fibrations and the Arnold-Liouville theorem

• SYZ mirror symmetry and moduli of special Lagrangians

• Examples

• General AAK construction (if time permits)
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The Arnold-Liouville theorem

Suppose we have an integrable system

H : X → Rn

We call this a Hamiltonian system if

{Hi ,Hj} = 0

This implies but is stronger than the usual Frobenius integrability of the

Hamiltonian vector fields, i.e. [Vi ,Vj ] = 0. We assume their flows are

defined for all time and hence produce an Rn action on X :

t · x = ϕH1
t1 . . . ϕ

Hn
tn (x)

Proposition : The orbits of the Rn action are isotropic. Moreover,

if n = 1
2dim(X ), then the connected regular fibers of H are La-

grangian orbits.
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The Arnold-Liouville theorem

We also require that H is proper and the base contains a dense open set

of regular values. In this case, we have the following:

Theorem (Arnold-Liouville): If H : X → Rn is an integrable

Hamiltonian system, then any regular fibre is a Lagrangian torus

admitting a neighbourhood symplectomorphic to B × T n, ω =∑
dbi ∧ dti with the standard torus action.

This is saying that the Rn action descends to a local T n action. When

there is a global torus action, we are in the realm of moment maps and

symplectic toric varieties. The first part of the theorem is easy (look at

stabilizer at a point) , but the second one requires the use of action-angle

coordinates. The action coordinates are given by the flux map:

I (b) =
( 1

2π

∫
γi

λ
)n
i=1

ω=dλexact

=
( 1

2π

∫
Γi

ω
)n
i=1
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Example: the Auroux system

We take the Hamiltonians

H : C2 → R2

H1(z1, z2) = |z1z2 − c |2,H2(z1, z2) =
1

2
(|z1|2 − |z2|2)

Figure 1: Figure from Auroux’s paper on T-duality; f = z1z2
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Example: the Auroux system

This example has a singularity at the origin, giving rise to a pinched torus

fibre which in turn produces monodromy, a Dehn twist!

Figure 2: Affine shear
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The Auroux system: action-angle coordinates

Let us see the

action-angle coordinates producing an

integral affine structure on the base.

• For small radius and λ > 0,

we have a section over the

base, denoted β and a thimble

associated to the height α.

• For large

radius, we have two sections over

the base, which we denote β0, β1

We have that α = β0 − β1. However, β transforms to β1 when λ > 0 and

β0 when λ < 0. Clockwise monodromy is (α, β) 7→ (α, β − α)!

Note that the coordinate α is unchanged, as it comes from a global S1

action of which H2 is the moment map.
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Mirror symmetry for Lagrangian torus fibrations

HMS heuristically produces Lagrangian mirrors to sheaves. Taking a

skyscraper sheaf, we see that we must have

Ext(Op,Op) ≃ H•(T n,C) ≃ HF (L, L)

So naturally, we expect the mirrors to skyscraper sheaves to be

Lagrangian tori and hence roughly

X = moduli of skyscraper sheaves = moduli of Lagrangian tori in X∨

We will see how this philosophy gives a recipe, called SYZ mirror

symmetry, of producing mirror pairs by constructing the moduli of

Lagrangian tori as a family in a fibration.
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Moduli of special Lagrangians and McLean’s theorem

Recall from Emily’ talk: a deformation ν ∈ H0(L,NL) is Lagrangian if

0 = Lνω = dινω

and is special if

0 = Lν imΩ = dιν imΩ

If we put α = −ινω, β = ιν imΩ, we in fact have a relationship

β = ψ ⋆g α.

Theorem (McLean): The deformations of a special Lagrangian

are controlled by the ψ-harmonic forms, which by Hodge theory

correspond to H1(L;R):

{special Lagrangian deformations of L} ↔ H1
ψ(L) ≃ H1(L;R)

If we are given a torus fibration X 0 → B, this identifies

TbB ≃ H1(p−1(b),R) ≃ Hn−1(p−1(b),R), ν 7→ −ινω or ν 7→ ιν imΩ
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Moduli of special Lagrangians: complex structure

We complexify the moduli space of special Lagrangians B by equipping

them with local systems ∇ = d + iA. This space M carries a Kahler

structure:

TL,∇M = {(ν,A) ∈ H0(L,NL/X )× Ω1(L)} ≃ H1
ψ(L)⊗ C

(ν,A) 7→ iA− ινω

J(ν,A) = (ν′,A′),A′ = −ινω, ιν′ω = A (complex structure)

Ω∨
L,∇(νj ,Aj) :=

∫
L

∧
j

iAj − ινjω (holomorphic n-form)

ω∨
L,∇((ν1,A1), (ν2,A2)) :=

∫
L

A2 ∧ ιν1 ImΩ− A1 ∧ ιν2 ImΩ (Kahler form)

The symplectic and holomorphic structures are exchanged!
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Moduli of special Lagrangians: coordinates

We have a pairing
TbB × H1(p

−1(b)) → R

(ν, γ) 7→
∫
γ

−ινω = −
∫
Γ

ω

Via the exponential map and after choosing a basis of H1 this gets us

local real coordinates on B. Similarly, after complexifying we obtain local

complex coordinates for M:

(L,∇) 7→
(
exp

(
−
∫
Γi

ω

)
hol∇(∂γi )

)
i

We can also define holomorphic functions for any β ∈ H2(X , L):

zβ : M → C×

zβ(L,∇) = exp(−
∫
β

ω)hol∇(∂β)
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The superpotential as curvature

In Floer theory, one considers chain complexes

CF (L, L′) =
⊕

p∈L∩L′

Λ · p, dp =
∑
[u]=1

M(p, q; [u])q

The differential in this complex squares to zero in favorable situations.

The obstruction comes in the form of a curvature term

d2 = (W (L)−W (L′))id

which counts index 2 disks with boundary on either L or L′- notice how

different this is from Morse theory.

Formally,

W (L,∇) :=
∑

µ(β)=2

nβ(L)zβ : M → C
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The point is that d2 has contributions coming from the boundary of the

moduli space of index 2 strips, which is a compact 1-manifold:

∂M(p, q; [u]) =
∐

[u]=[u′]+[u′′]

M(p, q; [u′])×M(p, q; [u′′])

L′

L

q p

u

β

Figure 3: Bubbled degeneration whose limit contributes to W (L) term in d2
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Example

L

L′
pq

u

v

W (L) = 0

W (L′) = zβ = exp(−
∫
β

ω) = exp(−
∫
u

ω) exp(−
∫
v

ω)

dp = ± exp(−
∫
u

ω)q

dq = ± exp(−
∫
v

ω)p

d2 = ±W (L′)id
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Wall-crossing and scattering diagrams

We see that we can do Floer cohomology only when W (L) = W (L′).

This divides the Lagrangian tori into chambers U∨, divided by walls of

potentially obstructed Lagrangian tori (bounding Maslov 2 disks). To

construct a mirror space to a torus fibration X 0 → B, one has to glue the

chambers across the walls - the correction maps are called instanton

corrections.
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The toric case: no wall-crossing

Toric varieties are compactifications of (C×)n which comes with the

standard torus fibration

(C×)n → Rn

All the tori are standard and unobstructed, so the mirror is just (C×)n

again. Adding in the toric boundary divisor, we need to modify the mirror

by a superpotential accounting for the new Maslov 2 disks hitting the

boundary. For example,

C× ↔ C×

CP1 ↔ (C×,W = z +
1

z
)
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The Auroux system again

X 0 = CP2 \ line ∪ conic = X \ D = C2 \ {xy = c}

We construct the mirror of C2 relative to D = {xy = c}, a generic fiber:

The Lagrangian torus fibration on X 0 has two chambers:

• Small radius chamber: Here, the fibration is trivial over a punctured

disk, so admits no holomorphic disks bounding the torus. Once we

add in the divisor, we fill in the puncture and get a section which is

the only holomorphic disk appearing in the superpotential. In

coordinates (w , u) associated to (α, β) we have

W = u
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The Auroux system again

• Large radius chamber: here, we can isotope the tori to be centered

at the origin and become standard product tori in (C×)2. Hence,

once we add the boundary divisor this reduces to the toric case in

the toric variety C2 which has two boundary components giving rise

to two holomorphic disks β0, β1. We can define coordinates

(w , v) ↔ (α,−β1), which express the superpotential as

W = zβ0 + zβ1 =
1

v
+

w

v

The class β deforms to both β0 and β1 = β0 + α due to bubbling once

we cross the singular wall. Identifying

u = zβ = zβ0 + zβ1

results in an instanton correction making the superpotential globally

defined:

W = u =
w + 1

v
=⇒ uv = w + 1
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The Auroux system again

The example is self-mirror:

C2 \ D ↔ {(u, v ,w) ∈ C2 × C×| uv = w + 1}

In fact, Pascaleff in his thesis explores this example and finds a

Lagrangian section of the SYZ fibration L such that

SH0 = HW (L, L) = C[u, v ,w ][(uv − 1)−1] = Ext(O,O)

Remark (Superpotential trickery): In this example, we used a

bit of trickery: we started with the open Calabi-Yau X 0 = C2 \ D
and constructed a torus fibration. A priori, we didn’t know how to

glue the two charts together. Initially, there are no Maslov 2 disks

bounding the torus fibers. However, by partially compactifying to

C2, we get a superpotential which is different in both chambers

(the Chekanov and Clifford tori). The trick is that the gluing maps

must identify the superpotential, so computing it in both chambers

tells us enough to understand them!
18



Another example with a single wall-crossing

In a similar way, we can construct the mirror to O(−2) = KP1 which we

think of as a degeneration of C× to A1 ∪ P1 ∪ A1.

Figure 4: Toric boundary

• Small radius chamber: trivial fibration, W = u.

• Large radius chamber: toric case, W = w+1+w−1

v
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Another example with a single wall-crossing

We need to equate

W = u =
w + 1 + w−1

v

Hence

KP1 ↔ (X 0 = {(w , u, v) ∈ C× × C2| uv = f (w)},W = u)

where f (w) = w + 1 + w−1. This has only two singular fibres at the

roots of f . If we were to remove a generic fibre from KP1 , this would

remove the superpotential from the mirror X 0. In fact, if we partially

compactify X 0 by allowing w ∈ C, we get the affine quadric X ≃ T ∗S2.

20



Hyperkahler rotations are not always self-mirror

The previous example shows that T ∗S2 is almost mirror to its

hyperKahler rotation KP1 , but not quite! One needs to insert a

superpotential and delete a generic fiber resulting in an LG model

(Y 0 = KP1 \ C×,W )

Proposition (Mirror symmetry for T ∗S2): There is a derived

equivalence

W(T ∗S2) ≃ Db(Y 0,W ) ≃ Db(C[x ]/x2)

sending the cotangent fiber which generates the wrapped Fukaya

category to the generator of the matrix factorizations and the zero

section which generates the compact Fukaya category to the gen-

erator of Perf(C[x ]/x)

Note that HMS would trivially not hold for T ∗S2 and KP1 as the former

has one generator, whereas the latter has two. 21



Big picture

We summarize the story in the following picture: there are three

chambers of the SYZ fibration, roughly corresponding to the hyperplanes

in the polytope of the toric mirror:
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Base-fiber duality

Both of the previous examples, which are toric varieties and thought of as

degenerations of C×, were found to be mirror to certain conic fibrations.

In fact, this is the approach AAK take. The idea is that the toric

boundary encodes information about the singular locus of the conic

fibration, a hypersurface in the base of the mirror. This phenomenon is

called base-fiber duality, and the picture is as follows:

Figure 5: Base-fiber duality: the thrice-punctured elliptic curve is dual to the

toric boundary of KP2 , which appears as the amoeba in the polytope
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Thank you for your attention!
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