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Symplectic cohomology



Hamiltonian Floer cohomology

If (M, dθ) is an exact symplectic manifold and H is a Hamiltonian

function on it, we can study the infinite-dimensional Morse theory of the

action functional

AX : LM → R

AX (γ) := −
∫

γ∗θ +

∫
H dt

It has

• generators critical points of AH which are 1-periodic orbits of XH

• differential counting solutions to Floer’s equation ∂Ju = ∇H

• The energy of a solution satisfies

0 ⩽ E (u) =

∫
|∂su|2ds ∧ dt =

∫
ω(∂su, ∂tu − X )ds ∧ dt

which one should think of as roughly E = dA and thus

E (u) = A(γ−)−A(γ+). This means that the differential decreases

the action.
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Comparison with quantum cohomology

For compact M, there is a PSS isomorphism

HF •(M,H) ≃ QH•(M)

for which the pair of pants product corresponds to the quantum product.

We will be interested in non-compact M, for example affine algebraic

varieties, for which the analogue of quantum cohomology becomes

symplectic cohomology.

3



Comparison with quantum cohomology

For compact M, there is a PSS isomorphism

HF •(M,H) ≃ QH•(M)

for which the pair of pants product corresponds to the quantum product.

We will be interested in non-compact M, for example affine algebraic

varieties, for which the analogue of quantum cohomology becomes

symplectic cohomology.

3



Liouville domains

We start with Liouville domains: compact exact symplectic manifold

(M, ω = dθ) with contact type boundary i.e. α = θ|∂M is a contact

1-form.

The Liouville flow defines a collar near the boundary and we can

cap it off with an infinite end:

M̂ = M ∪∂M [0,∞)× ∂M

θ|[0,∞)×∂M = erα,Z |[0,∞)×∂M = ∂r

The result is called the completion of Liouville domain. More generally, a

Liouville manifold is a manifold exhausted by Liouville domains.
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First definition of symplectic cohomology

Take a Hamiltonian on M̂ which at the infinite end looks like h(er ),

where h : R → R is a quadratic function. We define

SH•(M) := HF •(H)

Since XH = h′(er )R,∇H = h′(er )∂r , one can identify the 1-periodic

orbits of XH with the Reeb orbits of arbitrary period on the boundary!
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Alternate definition

Alternatively, one could take a family of Hamiltonians Hτ which initially

have increasing slope, but after a point look like τer + c . They only

capture Reeb orbits of period < τ . To capture all of the orbits, we take a

direct limit:

SH•(M) := lim−→HF •(Hτ )

6



Properties of SH

There is a canonical map H•(M) → SH•(M) accounting for the

low-energy solutions (where the Hamiltonian is close to zero, in the

interior).

The filtration by action leads to a Morse-Bott spectral sequence with

associated gradeds local Floer homologies, which reduce to Morse

homologies.

Moreover, different moduli problems equip SH• with a product and a BV

operator.
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Example: surfaces

For example, in the punctured genus g surface, the Morse-Bott spectral

sequence has first page

E1 = H•(M)⊕
⊕
i⩾0

H•(S1)[i(4g − 2)]

since the Maslov index in this case is the Chern number of the surface,

which is the Euler characteristic χ = 2− 4g . For g > 1 this degenerates

for degree reasons!
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Example: Unit ball

M = D2, M̂ = C. One can show that this vanishes using either approach:

• If we choose H = ( 12 |x |
2)2 + 2πk + 1

2 , then we have one stationary

point at 0, together with 1-periodic orbits at 1
2 |x |

2 = πl , l > k . The

Conley indices live in degrees

−n − 2nk ,−n − 2nk − 1,−n − 2n(k + 1),−n − 2n(k + 1)− 1, . . .

By taking k arbitrarily large, we see that SH•(D2) = 0.

• Equivalently, we could have taken a linear Hamiltonian H = τk
1
2 |x |

2

for a sequence τk ∈ (2πk, 2π(k + 1)). Each of these has a single

critical point at 0, and it can be shown that the continuation maps

all vanish.
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Viterbo’s theorem

Theorem (Viterbo’s theorem): Suppose N is oriented, spin and

closed. Then

SH•(T ∗N) ≃ H−•(LN)

The idea is that periodic Reeb orbits on T ∗N correspond to closed

geodesics, which are critical points of the energy functional on the free

loop space.
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Ganatra’s categorical results

It has been shown by Ganatra that the symplectic cohomology can be

recovered from the wrapped Fukaya category:

Theorem (Ganatra):

HH•(W(M)) ≃ SH•(M)

HC•(W(M)) ≃ SH•
S1(M)
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Finite-dimensional

approximations



Classical perspective

Milnor studied the Morse theory of the energy functional

E : LN → R

E (γ) =

∫
||dγ
dt

||2dt

The critical points of this are precisely the closed geodesics. He

constructed a finite-dimensional approximation for each k, which embeds

in a product space

L(t) := L(0, t1, . . . , tk = 1)E⩽c → Nk

γ 7→ (γ(ti ))

This is a deformation retract of the space of loops with energy less than

a fixed c , and moreover has the homotopy type of a finite CW complex.

Taking finer and finer subdivisions t of S1, as well as higher energy, leads

us closer to the loop space.
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Loop space of a sphere

We can understand ΩSn ≃ P(p, q;Sn) via the geodesics starting at p

and ending at q. There are infinitely many of them:

γ0 = p, γ1 = pp′q′q, γ2 = pqq′p′pq, . . .

which have index 0, n − 1, 2(n − 2), . . . . When n > 2 this exactly

determines the homology of the based loop space!
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Towards the generating function spectrum

Kragh does essentially the same as Milnor’s finite dimensional

approximation, except that he works on the loop space of T ∗N and

promotes it to a spectrum.

The idea is that we want to approximate the action functional

ΩT ∗N
AH−−→ R

Milnor tells us how to approximate the loop space of N: take the

piecewise geodesics corresponding to a subdivision of the interval. Kragh

just takes the cotangent bundle of Milnor’s construction:

T ∗Ω(r ,N)
Ar−−→ R

which embeds in (T ∗N)r .
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Conley indices

To make this promotion to spectra, we need to use so-called Conley

indices.

Definition (Conley indices): A pair of compact spaces B ⊂ A ⊂
M is a Conley index pair for f : M → R relative to (a, b) if

• B ⊂ A ⊂ f −1([a, b])

• int(A \ B) contains all critical points of f with values in

(a, b).

• A flow line in A either stays in A \ B converging to a critical

point, or exits through B.

The quotient space, if the index pair is good, is denoted

I ba (f ) := A/B

and has the homotopy type of a CW complex.
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Approximating the action functional

The finite-dimensional approximation to the action functional is encoded

in the following picture:

T ∗N

N

T ∗
qjN

γj−1

γj

εqj

εpj

εqj+1

εpj+1

qj−1

pj−1

q−j

p−j

qj

p̃−j

pj

p−j+1

q−j+1
qj+1

p̃−j+1

pj+1

Figure 1: Description of Ar from Kragh’s article

Kragh shows that these functions admit good index pairs.
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Definition of the (pre)-spectrum

Recall the relative Thom construction:

(A,B)E := (D(E )|A,S(E )|A ∪ (D(E )|B))

Essentially, Kragh shows that if (Ar ,Br ) is a good index pair for Ar , then

(Ar+1,Br+1) ≃ (Ar ,Br )
p∗TN

where p : T ∗Ω(N, r) → N is just projecting onto one of the T ∗N factors

and then further projecting down to N.

The way this is done is by looking at the diagram:

p∗TN T ∗Ω(N, r + 1)

T ∗Ω(N, r) R

h

Ar+1

Ar
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Definition of the (pre)-spectrum

So far, we have defined isomorphisms

(Ar+1,Br+1) ≃ (Ar ,Br )
p∗TN

We need to stabilize the bundle p∗TN so that we get a suspension

spectrum (recall that Σk(A/B) = Th(Rk)).

The way this is done is by just picking a stabilization, e.g. by using a

Whitney embedding N → Rk which has normal bundle ν. This gives

maps (in fact, homotopy equivalences if N is oriented) of index pairs

Σk(Ar ,Br )
p∗ν⊕r+1

= (Ar ,Br )
p∗ν⊕r⊕p∗ν⊕p∗TN → (Ar+1,Br+1)

ν⊕r+2

If we call this τr , this more or less defines a pre-spectrum

τr : Z(r+1)k → Z(r+2)k

18
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The spectrum

This can be modified (by taking iterating mapping cylinders and filling in

the gaps) to produce an honest spectrum Zn ’representing’ the symplectic

cohomology of T ∗N. In fact, one can identify

(Ar ,Br ) ≃ (DT (Ω(N, r)),ST (Ω(N, r)))

Ir ≃ Th(T (Ω(N, r)))

Theorem (Kragh): The Viterbo maps can be identified with the

following diagram on spectra:

H•(ΩL) H•(ΩN) ΩL−TL+η ΩN−TN

H•(L) H•(N) L−TL N−TN

Ωj ! Ωj!

j!
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Thank you for your attention!
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