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We think of an infinity category as a category whose morphism spaces are actually spaces, such

that there are coherent higher composition laws. One possible way of modelling such things is

using the notion of a simplicial set.

Resources: [Riehl],[Gall], [Land], [HTT].

1 Simplicial sets basics

1.1 Definition

We first define ∆ as the category which has objects [n] = {0,1, . . . ,n} and morphisms which are

order-preserving set maps.

Definition 1.1 (Simplicial set): A simplicial set is a presheaf on ∆, in other words a functor

X : ∆op→ Set

We denote X([n]) = Xn.

We notice that the category ∆ comes with certain natural maps which generate it: namely, the

maps

di : [n− 1]→ [n], ’misses i’

si : [n+ 1]→ [n], ’squishes down i, i+1’

These operations satisfy the properties

djdi = didj−1, i < j

sjsi = sisj+1, i ≤ j

sjdi =


1, i = j, j + 1

disj−1, i < j

di−1sj , i > j + 1

Every map can be factorized using the (co)face and (co)degeneracy maps, and hence we can think

of a simplicial set X as a module over the algebra generated by these relations. They define face

and degeneracy maps on X as follows:

di = Xdi : Xn→ Xn−1, si = Xsi : Xn→ Xn+1

Sometimes, a simplicial set is drawn as follows:

X0 X1 X2 . . .

We see that a map of simplicial sets X→ Y , which is a natural transformation, can also be seen as

a collection of maps Xn→ Yn which commutes with the face and degeneracy maps.
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We say that a simplex x ∈ Xn is degenerate if it comes from one of the degeneracy maps.

1.2 Yoneda and the standard simplices

Recall that the Yoneda embedding

Y : C → SetC
op
, c 7→ C(−, c)

is a full and faithful embedding such that

Hom(Y c,F) ≃ F(c)

We denote the image under Yoneda of [n] by ∆n. These are precisely the representable simplicial

sets, and every other one can be built from them by what is called the density theorem. We see that

HomsSet(∆
n,X) = Xn

More explicitly, the m simplices of ∆n are (by the Yoneda embedding)

∆n
m = Hom([m], [n])

Importantly, the action of the face and degeneracy maps on a morphism [k]→ [n] is composition

on the left:

[k]→ [n] 7→ [k − 1]→ [k]→ [n]

or

[k]→ [n] 7→ [k + 1]→ [k]→ [n]

The nondegenerate simplices are essentially the injective maps [m]→ [n]. The unique nonde-

generate n-simplex comes from the identity map. If we identify x ∈ Xn as a map x : ∆n → X,

then

di(x) ∈ Xn−1↔ ∆n−1 di−−→ ∆n x−→ X

Analogously to how CW complexes are built out of standard simplices, we have the following:

Theorem 1.2 (Density theorem): Every simplicial set is a colimit of the standard n-simplices:

lim−−→
x∈Xn

∆n ≃ X

Essentially, every x ∈ Xn contributes a x : ∆n→ X, but these are glued along in some combinatorial

way. The index over which we take the colimit is the category of ends, which has objects x ∈ Xn for

some n and morphisms f : x→ y precisely when this is induced by some map [n]→ [m], taking x

to y.
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1.3 Nerves, total singular complex and the geometric realization

Example 1.3 (Nerve of a category): Given a category C, we define a simplicial setNC as

• NC0 = obC

• NC1 = morC

• NC2 = pairs of composable arrows

• ...

The degeneracy maps send a string of n composable arrows to n+ 1 composable arrows by

inserting the identity map somewhere. The face maps compose two consecutive maps. This

is a simplicial set, and in fact a quasicategory (we will see what this means in a moment)

Now we consider the geometric realization of a simplicial set.

We first define

∆ : ∆→ Top

by ∆([n]) = ∆n, the standard n-simplex. We would like to extend this, via some sort of Kan

extension, to a functor on sSet:

sSet

∆ Top

Y

∆

The density theorem will allow us to do this:

Example 1.4 (The geometric realization): Given a simplicial set X we define

|X | :=

(∐
Xn × |∆n|

)
∼

where |∆n| = ∆n and the equivalence relation identifies the ith face of {x}×∆n with di(x)×∆n−1

and also collapses {si(x)} ×∆n to {x} ×∆n−1. Using the description of Kan extensions and

coends, one also realizes this as

|X | =
∫ n

Xn ×∆n = colim
(∐

f

Xm ·∆n
f∗−→−−→f ∗

∐
[n]

Xn ·∆n

)

Interestingly, the Kan complexes are determined by their geometric realization, up to

homotopy!

This is the left adjoint to the functor S taking a topological space Y to its total singular complex

SY : given any topological space Y , we can define

SYn = Top(∆n,Y )
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as the space of maps from the n-simplex to Y . Pre-composition with the maps which insert a

zero in some coordinate, or add the i-th and i+1-th coordinates, produce maps which satisfy the

simplicial set relations. We get the adjunctions

sSet Top
|−|

S

⊣

These in fact form what is called a Quillen equivalence of model categories: the homotopy categories

of both sides are the same, and the Kan complexes correspond to topological spaces.

Remark 1.5 (Adjoints of Kan extensions): This fits into a more general picture: whenever we

left Kan extend F : ∆→E via Yoneda, we get a right adjoint

R : E → sSet,Ren = E(F[n], e)

These two functors are extremely useful. For example, the classifying space of a group G can be

constructed by taking the nerve of the category defined by G and then its geometric realization.

Similarly, if one takes the geometric realization of SY , then it forms a CW complex whose cellular

homology is the same as the singular homology of Y :

Ccell
• (|SY |) ≃ C

sing
• (Y )

Example 1.6 (Internal homs):

We have a functor

∆→ sSet

given by taking the product with a fixed Y , F[n] = ∆n × Y . The Kan extension along the

Yoneda embedding is naturally the functor L = −×Y . This has as a right adjoint the functor

defined by

RZn = sSet(∆n ×Y ,Z) := [Y ,Z]n

The face and degeneracy maps are the ones induced by postcomposition from the ones on

∆n.

1.4 Horn fillings and quasicategories

We study some simplicial subsets of ∆n. Recall that we have an element

di ∈ ∆n
n−1 = Hom([n− 1], [n])

which omits i. We think of this as an element in the n−1 part of the simplicial set ∆n. This then

generates a subsimplicial set. Note that by Yoneda, the map di corresponds to an embedding

∆n−1→ ∆n

and we call the image ∂i∆
n.

6



The union of all the boundaries we call ∂∆n and it can be represented as the subsimplicial set

defined as

(∂∆n)m = {α ∈Hom([m], [n])|not surjective}

Why? Well, note that what the di generate is precisely all the morphisms one can get by composing

a bunch of morphisms dj , sj , one of which is di : [n−1]→ [n]. But any non-surjective morphism

must miss some i, so factorizes through one of these di . The converse is obviously also true: any

composition involving di is nonsurjective.

Similarly, we can define the i-th horn

(Λn
i )[m] = {α| [n] ⊊ α([m])∪ {i}}

or equivalently as the subsimplicial set defined by all faces except the i − th one, since the mor-

phisms generated by composing with anything but the di will always hit i and miss something

else.

For example, a filling in of Λ2
1 would constitute a 2-simplex σ such that d2σ = f ,d0σ = g.

Definition 1.7 (Kan complexes and quasicategories): A Kan complex is a simplicial set for

which every horn admits a filling. An infinity category is a simplicial set X such that any inner

horn 0 < i < n can be filled.

Proposition 1.8 (Singular chains are Kan complexes): For a topological space Y , its singular

chain SY is a Kan complex.

Proof. By adjunction, we turn the left diagram into the right one, but since |Λn
k | is a homotopy

retract of |∆n|, we have a lift.

Λn
k SY |Λn

k | Y

∆n |∆n|

adjunction

Proposition 1.9 (Nerves are quasicategories): The nerve of a category is an infinity category,

in which every inner horn has a unique lift.

Proof. Essentially, every sequence of composable arrows has unique composition. Or, we can use

the fact that the functor τ1 (the homotopy category) is adjoint to the nerve functor.
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We see then that all usual categories sit inside the quasicategories, but have unique compositions.

An infinity category can be thought of as a normal category, but where composition laws are not

uniquely defined: there are higher relations among them! We will see, though, that even though

compositions are not uniquely defined, they still form a contractible set, so in homotopical terms

is still a point.

Definition 1.10 (Homotopy equivalence): Suppose f ,g ∈ X1 are morphisms from a to b. We

have different relations of equivalence f ∼a g,f ∼b g,g ∼a f ,g ∼b f when there is a triangle

filling in f ,g and an identity morphisms. These are all equivalent when X is a quasicategory.
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2 Towards the infinity category of spaces

The aim of this chapter is two-fold. First, we introduce functor categories, inner fibrations and

mapping spaces. Then, we use the homotopy coherent nerve construction and apply it to the

simplicially enriched category of Kan complexes to produce the infinity category of spaces.

2.1 Functor categories

Recall that we have an internal hom

Hom(X,Y )n = HomsSet(X ×∆n,Y )

So for an infinity category C and a simplicial set K , we define

Fun(K,C) := Hom(K,C)

Some examples of functor categories:

• Fun(∆0,C) ≃ C

• Fun(∆1,C) is the arrow category

• Fun(∆1 ×∆1,C) are the commutative squares in C, as follows: we have 2-simplices such that

d1(σ ) = d1(τ).

To clarify the last point: the product ∆1 × ∆1 has 4 0-simplices (0,0), (0,1), (1,0), (1,1). The 1

simplices are pairs of 1 simplices of ∆1, which are enumerated by {id,0,1}, the identity being

the nondegenerate one. However, whilst 0 × 0,0 × 1,1 × 0,1 × 1 are degenerate (come from the

zero simplices by precomposing with ∆1→ ∆0), the ones where we multiply with id are not and

there are five of them: id × id being the diagonal, the rest being the sides of a square. The only

nondegenerate 2-simplices come from the different degeneracy maps [2]→ [1], which give the two

triangles. These 2-simplices witness the fact that the top and bottom ’compositions’ are the same!

Figure 1: Nondegenerate 2-simplex
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Definition 2.1 (Equivalence of infinity categories): Let f : C → D be a functor between

infinity categories. This forms an equivalence if it is an isomorphism in Fun(C,D), i.e. ∃g : D→

C so that f ◦ g ≃ id,g ◦ f ≃ id.

This is weaker than a natural isomorphism! For nerves, it means equivalence of 1-cats. For spaces,

it means a weak homotopy equivalence. For infinity cats, it means ”fully faithful and essentially

surjective”.

Recall: C being an infinity category is equivalent to

HomsSet(∆
n,C)→HomsSet(Λ

n
i ,C)

being a surjection of sets of outer hom. But if we think of internal hom instead we actually get the

equivalent statement that

Hom(∆n,C)→Hom(Λn
i ,C)

is an epimorphism of simplicial sets! Even more is true: this turns out to be a trivial Kan fibration.

We now turn to the claim that when X is an infinity category, then so is Fun(K,X). The idea is as

follows: want to show inner horns extend to n-simplex. By definition, the inner hom is adjoint to

the product with K , this is equivalent to a map

Λn
i →Hom(K,C)↔Λn

i ×K → C

and extending it to ∆n ×K . We add in the structure map to the terminal object:

Λn
i ×K −−−−−−→ Cy y

∆n ×K −−−−−−→ ∆0

We seek a diagonal lift in this problem.

Definition 2.2 (Inner fibrations and inner anodyne maps): An inner fibration is a map

p : X→ Y with the right lifting property with respect to inner horns, i.e. every diagram like this

has a lift:
Λn

i −−−−−−→ Xy yp
∆n −−−−−−→ Y

In this sense, an infinity category is just an inner fibration C→ ∆0. An inner anodyne map is a

map q : A→ B with the left lifting property with respect to inner fibrations.

Example 2.3 (Functors to nerves): Any functor C →ND from a quasicategory to a nerve is an
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inner fibration. First, let f : Λn
i →C be the top arrow.

Λn
i C

∆n ND

f

g
f̃

We see that the composition g ◦ f has a unique lift to ND which is the bottom map, since

nerves admit unique lifts. On the other hand, since C is an infinity category, there is some

lift f̃ : ∆n→C. The reason this commutes with the bottom arrow is because g ◦ f̃ ◦ ι = g ◦ f

satisfies the uniquely defining property of the map ∆n→ND.

Definition 2.4 (Trivial Kan fibration): A map p : X→ Y is a trivial Kan fibration if it has the

right lifting property with respect to all inclusions of simplicial sets. These are obviously a subset

of the inner fibrations. They also admit sections, by taking the inclusion ∅→ Y and the identity

map Y → Y .

The Kan fibrations form the fibrations in the Quillen model structure, and the monomorphisms

form the cofibrations. Trivial Kan fibrations are stable under pullbacks, by using UMP for fiber

products.

So it amounts to showing that Fun(K,−) preserves inner fibrations, which is also equivalent to the

fact that inner anodyne maps are stable under −×K . This is a standard result in the literature. We

mention the theorem which allows such arguments to work (Theorem 1.3.37 in Markus Land’s

book):

Theorem 2.5 (Stability of inner fibrations): Suppose we are given maps f : X→ Y , ι : A→ B

of simplicial sets. This induces a diagram

Fun(B,X) −−−−−−→ Fun(A,X)y y
Fun(B,Y ) −−−−−−→ Fun(A,Y )

and hence a map

⟨ι, f ⟩ : Fun(B,X)→ Fun(B,Y )×Fun(A,Y ) Fun(A,X)

If f is an inner fibration an ι a monomorphism, then ⟨ι, f ⟩ is an inner fibration. If ι is anodyne,

then ⟨ι, f ⟩ is trivial.

Corollary 2.6 (Corollary): When A = ∅,B = K,X = X,Y = ∆0 we see that X being an infinity

category implies that Fun(K,X) is also an infinity category. Moreover, if X is a Kan complex,

then so is Fun(K,X).
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Lemma 2.7 (Equivalent condition for being a quasicategory): Let X be a simplicial set.

Then TFAE:

• X is an∞-category

• For every inner anodyne map i : A→ B, the induced map i∗ : Fun(B,X)→ Fun(A,X) is a

trivial Kan fibration.

• Fun(∆2,X)→ Fun(Λ2
1,X) is a trivial Kan fibration.

Proof. For (1) =⇒ (2), we use the theorem 2.5. Namely, we put Y = ∆0 and we then see that

Fun(A,X)×Fun(A,∆0) Fun(B,∆0) ≃ Fun(A,X)

: the fiber product informally consists of pairs f : A → X,g : B → ∆0 such that the following

commutes:

A
f

−−−−−−→ By y
B −−−−−−→

g
∆0

But f can be lifted to f̃ since A→ B is inner anodyne which determines g. So the theorem says that

Fun(B,X)→ Fun(A,X)

is a trivial Kan fibration. This immediately implies (3).

Finally, to show (3) =⇒ (1), X to be an infinity category, we must verify that X→ ∆0 satisfies the

extension property for inner anodynes. We need to appeal to the fact that the inner anodyne maps

are generated by all maps of the form [K ↪→ L]⊠ [Λ2
1→ ∆2], where ⊠ refers to the induced map

from the pushout as in the diagram:

K ×Λ2
1 K ×∆2

L×∆2 pushout

L×∆2

In this case, we can think of the pushout as the intersection, which is just K ×Λ2
1 when K ↪→ L is a

monomorphism. So the required extension property is reduced to the diagram:

K ×Λ2
1 X K Fun(Λ2

1,X)

L×∆2 ∆0 L Fun(∆2,X)

adjunction

?
?
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But by assumption, the right vertical is a trivial Kan fibration, so has the lifting property for all

monomorphisms.

With this lemma, we can show that the space of compositions is contractible, one of our original

aims:

Corollary 2.8 (Space of compositions is contractible):

Suppose (g,•, f ) : Λ2
1 → C is a pair of composable arrows in an infinity category. Then the

simplicial set of fillers which are lifts to ∆2 is the pullback

Comp(f ,g) −−−−−−→ Fun(∆2,C)y y
∆0 −−−−−−→ Fun(Λ2

1,C)

which is a subsimplicial set of Hom(∆2,C) and this simplicial set is contractible: it is a Kan

complex and is weakly homotopy equivalent to ∆0.

Proof. By the previous theorem, the right vertical arrow is a trivial Kan fibration. Hence, its

pullback to ∆0 is a trivial Kan fibration.

Generalization: recall that the spine Spn is generated by adjacent edges in ∆n and the inclusion is

inner anodyne. Hence

Hom(∆n,C)→Hom(Spn,C)

is a trivial Kan fibration. A map from the spine is a sequence of n composable morphisms. Hence

we can apply the same argument to show that the space of n-compositions is contractible.

2.2 Mapping spaces

With the tools from the previous section, we are ready to define the mapping spaces between two

objects in an infinity category.

Definition 2.9 (Mapping space): Given an infinity category C, we have a pullback diagram

where we evaluate at the two endpoints.

Map(c,d) −−−−−−→ Fun(∆1,C)y y
∆0 −−−−−−→ C ×C

The resulting space Map(c,d) is a simplicial set, indeed a Kan complex! This is because we can

think of C ×C = Fun(∂∆1,C) and ∂∆1 ↪→ ∆1 is inner anodyne, implying by 2.7 that the right

vertical map is a trivial Kan fibration.

Example: the loop space Ω(X) = MapX(x,x).
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In ordinary category theory, the ’mapping space’ is just a set, or a 0-category. In the same way, we

move from an (∞,1) category to (∞,0) when we take mapping spaces of quasicategories, i.e. the

mapping spaces are∞-groupoids.

We can see that there is a morphism between two f ,g : c→ d if and only if f ≃ g, since basically

we have to fill in a square which restricts to f ,g on the sides and the identity maps on the top and

bottom, since ∆1
0 has degeneracy maps which have s(c) = idc and s(d) = idd .

Definition 2.10 (Fully faithful functors): F : C→D is fully faithful if, for every c,d ∈ C, the

induced map on mapping spaces is a homotopy equivalence:

Map(c,d)
f
−→Map(Fc,Fd)

Note that this is not a property of the homotopy category! Take X to be a noncontractible, simply-

connected space. The canonical map X → ∆0 induces an equivalence on homotopy categories!

So, in a way, the homotopy category only sees the first homotopy group, whereas the full infinity

groupoid sees everything.

Similarly, we can define essential surjectivity. For spaces, this should be a surjection on π0.

In particular, a map of spaces is ess. surj and fully faithful iff it is a homotopy equivalence, just

like in ordinary category theory.

Proposition 2.11 (Proposition): F is ess surj and fully faithful iff it is an equivalence.

Cores and subcategories

Suppose we have a subcategory of the homotopy category of an infinity category C. Form a

pullback using the nerve construction:

C′ −−−−−−→ Cy y
N (h(C)′) −−−−−−→ N (h(C))

This is the subcategory of C spanned by h(C)′ . This is an infinity category, which can be checked

by using the lifting criterion as well as the fact that an n simplex in a nerve is determined by its

restriction to the spine, which is a subsimplical set of the inner horns.

Definition 2.12 (Cores): The core of an infinity category is the subcategory spanned by the core

of h(C), i.e. the subcategory spanned by isomorphisms. This is the maximal infinity groupoid in

C.
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The parametrized composition space

Suppose we have three objects c,d,e ∈ C. Can define a triple mapping space, by instead using ∆2.

Map(c,d,e) −−−−−−→ Fun(∆2,C)y y
∆0 −−−−−−→ C ×C ×C

This has projection maps to the usual mapping spaces. Then

Map(c,d,e)→Map(d,e)×Map(c,d)

is a trivial Kan fibration. The fiber is the space of compositions, which is contractible. We thus

have a homotopy inverse section i.e. a choice of composition. But this is not well-defined, but only

unique up to homotopy. One has to uses the general fact that the sections of a Kan fibration form a

contractible set: the idea is that trivial Kan fibrations are stable under Fun and hence we can form

a pullback
Γ (Y ,X) −−−−−−→ Fun(Y ,X)y yp
∆0 −−−−−−→

id
Fun(Y ,Y )

2.3 The homotopy coherent nerve

In this section, we describe an adjunction between the simplicial sets and simplicially enriched

categories in the form of the coherent nerve and the thickening functor. This also forms a Quillen

equivalence between Quillen’s model structure on sSet and Segal’s model structure on sCat.

The idea is that we have a ’thickening’ functor

C : ∆→ sCat

This can be left Kan extended to a functor on simplicial sets, and has an adjoint called the homotopy

coherent nerve.

The thickening functor

The construction is involved.

Suppose 0 ≤ i ≤ j . Denote by Pi,j to be the set of subsets

Pi,j = {I ⊂ {i, ..., j}|i, j ∈ I}

partially ordered by inclusion. If i > j define this to be empty.

Define

C[∆n] :=


0,1, ...,n as objects

Hom(i, j) = N (Pi,j )
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This is a thickening of ∆n. It is a simplicial category, i.e. a category enriched over simplicial sets.

Composition is defined by taking unions of subsets.

Example 2.13 (Example): We have that C∆2 has three objects 0,1,2. The hom sets are:

• C∆2(0,0) = C∆2(0,1) = C∆2(1,1) = C∆2(1,2) = C∆2(2,2) = ∆0

• C∆2(0,2) = ∆1 is the nerve of the poset of subsets containing both 0 and 2 i.e.

N ({0,2} ⊂ {0,1,2}).

We can extend this functor to sSet by using the density theorem and this will be a Kan extension

along Yoneda. This defines a functor C, which has an adjointN as in 1.5. We get a picture

sSet

∆ sCat

C
Y

C

N

⊣

As we saw in 1.5, this forces the value ofN to be

NCn = HomsCat(C∆n,C)

For example, the objects ofNC0 are the objects of C, the morphisms are also the same, but (NC)2

consists of the data of three objects x,y,z, three morphisms f ∈ C(x,y)0, g ∈ C(y,z)0,h ∈ C(x,z)0

and a 1 simplex in C(x,z)1 = Fun(∆1,C(x,z)) restricting to h and g ◦ f on the ends. Informally, a

2-simplex in this simplicial set consists of 2 composable morphisms and a homotopy between their

composition and a third morphism.

We apply this to the simplicially enriched category of Kan complexes, which has objects Kan

complexes and morphism spaces Fun(K,L), which are also Kan complexes!

Definition 2.14 (Spc): We define a simplicial setN Kan := Spc whose n-simplices are

Spcn := HomsCat(C∆n,Kan)

Theorem 2.15 (Theorem): If a given simplicial category C is locally Kan (i.e. all morphism

spaces are Kan complexes) then NC is an infinity category. In particular, Spc is an infinity

category, the infinity category of spaces.

Proof. By adjunction, the lifting diagram corresponds to one involving C[Λn
i ], C[∆n] and C. These

are basically the same except how to extend it to Hom(0,n). But since C is locally Kan, this is

possible.
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Λn
i N C CΛn

i C

∆n C∆n

adjunction

Essentially, CΛn
i has the same objects as C∆n, but one smaller morphism space:

• HomCΛn
i
(i,k) = HomC∆n(i,k), (i,k) , (0,n)

• HomCΛn
i
(0,n) ⊂HomC∆n(0,n) = NP0,n = ()∆1)n−1 is given by deleting the interior and bottom

j face. This is an anodyne map, so it lifts if C is locally Kan.

In fact more is true, even though I am not sure how to prove it: the mapping space in the infinity

category of spaces recovers the inner hom

Hom(X,Y ) = Fun(X,Y ) ≃MapSpc(X,Y )
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3 A brief review of limits and colimits

Definition 3.1 (Limits and colimits): A cone over F : I → C is a natural transformation

η : l→ F. A limit cone is one such that

Map(c, l)→Map(c,F)

is a homotopy equivalence. We need to compose with η, and while this is not unique, it is up to

homotopy.

Similarly, a cone under F is a natural transformation ϵ : F→ l and a colimit cone is one such

that

Map(l, c) ≃Map(F,c)

An object is initial iff Map(l, c) is contractible for all c and terminal if Map(c, l) is contractible for

all c. An infinity category is called pointed if it has a zero object, i.e. and object that is both initial

and final.

Pullbacks

A pullback amounts to the data

c
h−−−−−−→ r

i

y yf
s −−−−−−→

g
t

such that g ◦ i ≃ f ◦ h.

In the infinity category of spaces, this is a homotopy pullback!

Proposition 3.2: Both Spc and Cat∞ admit small limits and colimits. The inclusion of the

former into the latter preserves all limits and colimits.

using this result, limits in infinity categories can be understood via their mapping spaces. For

example, a pushout has the formula

Map(y
∐
x

z,c) ≃Map(y,c)×Map(x,c) Map(z,c)

where the pullbacks are happening in the infinity category of spaces, which we just said admits

small limits and colimits.

We note that there are alternative definitions of limits and colimits in infinity categories using

joins and slices, which can be found in [Land].
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