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0 Introduction

The aim of this essay is to study a formidable object - the so-called Fukaya category associated to

a symplectic manifold M - along with some applications. In a sentence, the Fukaya category can

be thought of as a categorification of the intersection theory of a special type of submanifold in

M, the Lagrangians L ⊂M.

Just like algebraic geometers study Ext groups of sheaves Ext•(E ,F ), so symplectic geometers

study Floer cohomology of Lagrangians HF•(L0,L1). This is more than just an analogy: the ho-

mological mirror symmetry conjecture states that the (derived) Fukaya category of a symplectic

manifold is equivalent to the derived category of coherent sheaves on its mirrorM†, and in fact the

Floer cohomology groups appear as morphism spaces in the Donaldson-Fukaya category, whereas

the Ext groups appear as morphism spaces in the latter. The original motivation for this is string

theory, where the A-model studies Lagrangian submanifolds, whereas the B-model studies the

complex subvarieties of a Calabi-Yau.

The remarkable thing about Fukaya categories is that they can be calculated. In particular,

Abouzaid has shown that the wrapped Fukaya category of a cotangent bundle is generated by

a cotangent fibre. In this essay, we will restrict ourselves to a modest version of this result, con-

cerning the (exact) Lagrangian submanifolds of T ∗Sn.

The outline of the essay is as follows: we begin with a lightning review of the basic concepts of

symplectic geometry, and state the important Weinstein neighbourhood theorem, which will be

incredibly useful later on in the definition of the Dehn twist. We also calculate the fundamental

group of the Lagrangian Grassmanian, which will be put to use in the definition of the Maslov

index and the grading of the Floer cohomology groups.

In chapter 2, we give a tour of Lagrangian Floer cohomology, which also attempts to be historically

accurate. We begin with an overview of Morse’s original vision of Morse theory, which studies the

topology of a manifold using the critical points of a smooth function on it. This strategy com-

pletely determines the homotopy type of the manifold, which can be described by attaching cells

every time a critical value is passed. However, a more modern approach due to Smale identifies

the presence of moduli spaces of gradient trajectories between critical points. Counting such

gradient trajectories between critical points turns out to be exactly analogous to the differential

in celullar homology, and hence we obtain the result that Morse homology recovers the Betti

homology. It was these ideas of Morse and Smale, as well as Witten, which led Andreas Floer

to his infinite dimensional Morse theory. In a nutshell, one can study the paths γ between two

Lagrangian submanifolds (in physics terminology, these are strings between D-branes). This is

an infinite-dimensional path space, and comes equipped with an action functional, which mea-

sures the symplectic area sweeped out by an infinitesimal deformation of γ . The ingenious idea

of Floer was to apply Morse theory in this context - the critical points turn out to be constant

paths at intersection points, and the gradient trajectories become J-holomorphic strips. Trying
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to generalize Morse theory to this inifinite dimensional context comes with considerable ana-

lytic difficulties (which we will mostly omit). However, the main reason the analysis works out

is that the equations defining J-holomorphic curves are elliptic PDE’s, whose linearizations are

Fredholm operators, to which an infinite-dimenisonal inverse function theorem applies.

With all of this in mind, chapter 2 ends with a definition of Floer cohomology and subsequently

the Fukaya category, which has objects L (the Lagrangian submanifolds) and morphism spaces

Hom(L0,L1) := CF(L0,L1). The name of the Fukaya category is deceiving, as it is resolutely not a

category in the usual sense: its morphism spaces are chain complexes equipped with a differential

µ1, and there are composition maps µ2 which are associative only up to a homotopy given by a

higher morphism µ3. This process continues to infinity, which makes the Fukaya category an A∞

category. All of these higher operations are defined by counting J-holomorphic strips with k + 1

marked points, and enjoy remarkable recursive combinatorial properties, due to the fact that the

domain spaces (disks with marked point) form operads, called Stasheff associahedra.

In chapter 3, we embark on trying to prove the long exact sequence in Floer cohomology due to

Seidel, which states that for an exact Lagrangian sphere Z ⊂ M and any Lagrangians A,B, the

following is exact:

...→HF•(Z,A)⊗HF•(Z,B)→HF•(τZ (A),B)→HF•(A,B)→ ...

τZ denotes a symplectic automorphism known as a Dehn twist. In order to prove this result, we

need to go through a little detour in Picard-Lefschetz theory, which is what happens when one

tries to extend Morse theory to the holomorphic setting. Here, passing through critical values

is replaced by the notion of monodromy around the critical value. Importantly, the Dehn twist

along a vanishing cycle appears as the monodromy around a single critical point of a Lefschetz

fibration! Conversely, any Dehn twist appears as the monodromy of a certain standard fibration.

Hence, if we want to study Dehn twists, we might as well study these fibrations.

With this motivation, we come to Seidel’s TQFT. Namely, instead of just counting J-holomorphic

maps from a surface to a symplectic manifold, we can count J-holomorphic sections of Lefschetz

fibrations E → S over surfaces, which have certain Lagrangian boundary conditions. When the

base is a surface with strip-like ends, labelled with positive and negative edges, this will result

in relative Gromov-Witten invariants, which count sections asymptotic to ye at the ends of the

strip:

CΦE/S :
⊗

CF(Le+,0,Le+,1)→
⊗

CF(Le−,0,Le−,1)

⊗ye+ 7→
∑

ΦE/S (ye− , ye+ )⊗ ye+

As a particular application, the trivial fibration will recover the Floer cohomology groups. More-

over, the pair-of-pants surface will recover the multiplication µ2. Using this, as well as the stan-

dard fibration for the Dehn twist, the relative invariants allow for the construction of chain maps

which lead to Seidel’s LES in Floer cohomology.
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Finally, in chapter 4, we use all of the machinery developed to prove that every exact Lagrangian

inside T ∗Sn behaves Floer-theoretically like the zero section, in the sense that they are isomor-

phic objects in the (derived) Fukaya category. Informally, an isomorphism in the Fukaya category

means that Floer theory cannot distinguish between the two objects. This is a weak version of

the nearby Lagrangian conjecture, which states that all exact Lagrangians (satisfying some ex-

tra conditions) are Hamiltonian isotopic to the zero section. The main ingredient in the course

of the proof will be the long exact sequence in Floer cohomology, along with a result from the

representation theory of quivers.
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1 Symplectic geometry

1.1 Basics

We introduce the basic objects of symplectic geometry, together with a few theorems.

Definition 1.1 (Symplectic manifold): A symplectic manifold (M,ω) is a manifold equipped

with a nondegenerate, closed 2-form ω.

The closedness is a fundamental assumption, which shows that the symplectic area is homotopy

invariant (the importance of this will become apparent later on)

Example : Even-dimensional Euclidean space with coordinates (xi , yi) comes equipped with

the two form

ω =
∑
i

dxi ∧ dyi

In fact, this can be generalized to all cotangent bundles T ∗M, where the local coordinates

on M are given by qi and the fibre coordinates by pi . Then we have an exact symplectic

form given locally as follows:

ω :=
∑

dpi ∧ dqi = dλ,

λ =
∑

pidqi

By linear algebra, any symplectic manifold has even dimension. Moreover, the symplectic form,

just like the Riemannian metric, gives an isomorphism between the tangent and cotangent bun-

dles and we can define a Hamiltonian vector field as a vector field dual to an exact 1-form:

ω(XH ,−) = dH

The flow of this is a Hamiltonian isotopy, which preserves the symplectic form due to the magic

formula:

LXHω = dιXHω+ ιXHdω = d2H = 0

So d
dtφ

∗
tω = φ∗tLXHω = 0

In the course of the next chapter, we will develop a cohomology theory which is invariant under

these special types of symplectomorphisms. This theory, called Floer cohomology, is extremely

important in the study of a special class of submanifolds of symplectic manifolds, the so-called

Lagrangians.

Definition 1.2 (Lagrangian submanifold): A submanifold L ⊂M is called Lagrangian if it

has half the dimension of M and the inclusion pulls back the symplectic form to 0: ω|L = 0.

Equivalently, at every point p ∈ L, TpL is a Lagrangian subspace of TpM, which can also be used

to show thatNL/M ≃ T ∗L
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Example : An important example of a Lagrangian embedding is the zero section s0 : M →

T ∗M.

Example : There is no Lagrangian 2-sphere inside CP2, since if there was such an object,

its normal and tangent bundles would be isomorphic. But the Euler class of the tan-

gent bundle, evaluated against the fundamental class of S2, would give (by Gauss-Bonnet)

χ(S2) = 2, whereas the Euler class of the normal bundle is Poincare dual to S2 and hence

its Euler number, being the intersection number of S2 with itself, would end up being a

square integer!

Definition 1.3 (Lagrangian Grassmanian): We denote the set of linear Lagrangian subspaces

of R2n by L(n).

In fact, the set of unitary matrices U (n) acts transitively on L(n), since every Lagrangian can be

mapped via a unitary matrix to the horizontal Lagrangian Λhor := {y = 0}. The stabilizer of this is

precisely O(n), since a matrix X + iY =

X −Y

Y X

 sends Λhor into itself precisely when Y = 0 i.e.

the matrix is in O(n). This shows that L(n) ≃U (n)/O(n).

Proposition 1.4 (Fundamental group of Lagrangian Grassmanian): The square of the de-

terminant map induces an isomorphism on fundamental groups

π1(L(n)) ≃ π1(U (n)/O(n))
det2

−−−−→ π1(S1) ≃ Z

Proof. We have the following fibrations:

SU (n− 1) SU (n)

S2n−1

SO(n) SU (n)

SU (n)/SO(n)

SU (n)/SO(n) U (n)/O(n)

S1

det2

The vertical arrow in the first one sends a matrix to its first column. This fibration, using the long

exact sequence of homotopy groups, tells us by induction that SU (n) is simply-connected. Ap-

plying the same LES to the second one, we get that π1(SU (n)/SO(n)) = 0 is also simply-connected.

Finally, applying the LES to the third fibration gives us the desired isomorphism.

Hence, given any loop of linear Lagrangian subspaces, we can associate its Maslov index, which

is the integer in the isomorphism above. Note that since H1 = πab1 ,

H1(L(n);Z) ≃Hom(H1(L(n)),Z) = Hom(π1(L(n)),Z)

8



Pulling back the generator of π1(S1) along det2 we get µ ∈H1(L(n);Z), the universal Maslov class.

Let’s also quickly mention the fact that Sp(2n), the group of matrices preserving the standard

symplectic form, deformation retracts onto U (n), and hence the classifying spaces of symplectic

and complex vector bundles are homotopy equivalent:

BSp ∼ BU =⇒ H•(Sp) ≃H•(U )

Therefore symplectic manifolds have the same characteristic classes as complex manifolds. We

can thus talk about Chern classes in the symplectic setting.

1.2 Symplectic invariants

The geometry of symplectic manifolds is both rigid and flexible at the same time. This flexibility

is illustrated by the following theorems, whose proofs can be found in [6], chapters 8 and 9.

Theorem 1.5 (Darboux): Let (M,ω) be a symplectic form and p ∈M be any point. Then there

is a local coordinate system in which ω looks like the standard form on Euclidean space.

Theorem 1.6 (Weinstein tubular neighbourhood): Given a Lagrangian L ⊂ (M,ω), there

exists a neighbourhood U of L in M and U ′ of L′ (the zero section) in T ∗L and a symplectomor-

phism ϕ :U ≃U ′ such that

U U ′

L

ϕ

ι s0

These theorems basically tell us that symplectic manifolds do not admit local invariants near

points and near Lagrangian submanifolds.

The essential ingredient in studying invariants of symplectic manifolds came from Gromov’s in-

sight of counting maps from Riemann surfaces. The point is that every symplectic manifold can

be made into an almost complex manifold compatibly with the symplectic form: there exists a

contractible (in fact convex) set of endomorphisms J : TM → TM such that g := ω(−, J−) is a Rie-

mannian metric on M. (One could also get away with studying only the tame almost complex

structures). Importantly, we can move around in this space of compatible almost complex struc-

tures as to end up in a generic situation (transversality), which will help in the definition of Floer

cohomology.

Definition 1.7 (J-holomorphic map): A map f : (Σ, j)→ (M,J) is J-holomorphic if it com-

mutes with the almost complex structures, i.e. df ◦ j = J ◦ df . Applying J to both sides this is

equivalent to df + J ◦ df ◦ j = 0, i.e. f is a zero of the generalized del bar operator

∂J :=
1
2

(d + J ◦ d ◦ j)
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The J-holomorphicity equation can be thought of as a generalized Cauchy-Riemann equation and

in the next chapter we will study the moduli space of its solutions. Since this operator is elliptic,

its linearization is Fredholm and hence the expected dimension of the moduli space, by an infinite

dimensional version of the inverse function theorem, will be the index of the operator. 1 It turns

out that this index, à la Atiyah-Singer, is a purely topological invariant, defined using the Maslov

index, which we mention in the next section.

1.3 The Maslov index of a bundle pair

Let Σ be an oriented compact surface with boundary ∂Σ =
⋃h

1∂kΣ consisting of a finite number of

copies of S1 - the examples we will mostly be using are the unit diskD and the cylinder C = S1×I .

Any symplectic vector bundle E→ Σ is symplectically trivial, if we assume that the boundary is

nonempty (see Proposition 2.6.7 in [15]). If furthermore λ→ ∂Σ is a Lagrangian subbundle, in the

sense that the fibers λp are Lagrangians inside Ep for p ∈ ∂Σ, then a trivialization Φ : E ≃ Σ×R2n

restricted to the boundary components ∂1Σ, ...,∂hΣ produce loops Φ(λ|∂iΣ) which we denote γ i
Φ ,λ :

S1→L(n).

Definition 1.8 (Maslov index of a symplectic bundle pair): We denote by

µ(E,λ) :=
∑
i

µ(γ iΦ ,λ)

the sum of the Maslov indices of the boundary components. This value is independent of the

trivialization Φ and is called the Maslov index of the symplectic bundle pair (E,λ).

The reason for the independence of Φ is that two trivializations Φ1,Φ2 differ by some map g :

Σ → Sp(2n) and hence µ(Φ2,∂iΣ) = µ(Φ2,∂iΣ) + 2ind(g |∂iΣ). Summing over all i, the indices of

g are going to add up to 0, since the surface Σ provides a nullcobordism between the boundary

components and the degree map is invariant under cobordisms (see Proposition 2.1.14 in [10]).

The situation we are most interested in is when we have a map f : (Σ,∂Σ)→ (M,L), where M is

a symplectic manifold and L is a Lagrangian. This then this gives us a symplectic bundle pair

(f ∗TM,f |∗∂ΣT L) whose Maslov index we denote by µL(f ). In particular, when Σ =D, we get:

Definition 1.9 (Maslov class): Given u ∈ π2(M,L) represented by a map u : (D,∂D) →

(M,L), its restriction to the boundary is a loop γ in L. This loop γ : S1→ L defines a loop of La-

grangians Tγ(t)L inside the Lagrangian bundle L→M, whose fiber consists of the Lagrangians

inside TpM. Since u∗L is trivial, the unit disk being contractible, we can use a trivialization to

identify each fiber with L(n) and we get a loop in L(n) ≃ Z. This defines the Maslov class

µL : π2(M,L)→ Z

1The proper formulation of this needs the notion of a section of a Banach bundle, but we will not be concerned with

the details of the analysis.
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2 Floer theory

We will give a brief overview of Morse theory, starting from the historically first point of view,

namely that of Morse, which is still powerful enough to express the homotopy type of spaces

just by looking at critical points of smooth functions. Then, we explain a slightly more modern

approach, using moduli spaces of flowlines, which was discovered by Smale. This will lead us

to the concept of Morse homology, and more generally to an infinite-dimensional version due

to Floer, which is conceptually similar, but whose analytical foundations are quite a bit more

difficult. This will allow us to define Lagrangian Floer cohomology, which occur as morphism

spaces in the Donaldson-Fukaya category.

2.1 Morse theory and Morse homology

2.1.1 Morse theory

The basic idea of Morse theory is to study the topology of a smooth manifold by exhibiting the

critical points of a generic function on it. For example, for any manifold nicely embedded in RN ,

one can take the height function, and every time one hits a critical point, the topology changes by

adding a cell with dimension equal to the index of the Hessian (more on this in a moment).

More precisely, start with a smooth function f :M→ R.

Definition 2.1 (Hessians and critical points):

• A critical point of f is a point p ∈M where dfp = 0.

• The Hessian of f at a critical point p in local coordinates xi is given by the bilinear form

on TpM:

Hessp(f )(
∂
∂xi

,
∂
∂xj

) =
∂2f

∂xi∂xj
(p)

More globally, one can define it as Hessp(f )(X,Y ) = (X ·Y · f )(p) = (Y ·X · f )(p). The last

equality follows, as their difference is [X,Y ] · f = dfp([X,Y ]) = 0, as p is a critical point.

• p is a non-degenerate critical point if Hessp(f ) is a nondegenerate bilinear form.

The idea is that degenerate critical points kill off a bit of the tangent space and lose geometric

information. In contrast, the Morse lemma (see e.g. [16]) tells us that around a neighbourhood of

a non-degenerate critical point p the function f looks like

f = f (p)−
k∑
i=1

x2
i +

n∑
j=k+1

x2
j

In particular, this shows that the non-degenerate critical points are isolated.

The index of f at p is the number k, which can be thought of as the dimension of the maximal
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subspace where the Hessian is negative definite, i.e. the number of negative eigenvalues of the

Hessian. We will illustrate the meaning of this in the following example:

Example (CW structure on complex projective space): Let us identify CPn = Cn+1 \ {0}/C× ≃

S2n+1/S1. This has coordinates [z0 : ... : zn] such that
∑
|zj |2 = 1 and the brackets mean that

we can rescale by any λ ∈ S1. Define

f : CPn→ R

[z0 : ... : zn] 7→
∑

j |zj |2

The coefficient j here doesn’t have much significance - we can pick any n + 1 real, dis-

tinct constants just as well. On the affine open sets Ui where zi , 0, one has a standard

coordinate system

Ui ≃ Cn

[z0 : ... : zn] 7→ |zi |
zj
zi

= xj + iyj

Note that we have to multiply by |zi | as we normalized the coordinates to be in S2n+1. Then

|zj |2 = x2
j + y2

j for i , j and |zi |2 = 1−
∑

(x2
j + y2

j ). This implies that f can be written as

f = i +
∑
j,i

(j − i)(x2
j + y2

j )

in the neighbourhood Ui . The only critical point in this neighbourhood is then [0 : .. : 1 :

... : 0], where the 1 occurs only in the i-th coordinate, and has index twice the number of

negative integers among {j − i| j = 0, ...,n}. Hence, the index is 2i, and we thus recover the

fact that CPn has a cell decomposition with one cell in each dimension 0,2,4, ...,2n.

The last line of the example has to do with the following fact: in between two critical values

a,b ∈ R the topology of f −1(a,b) ⊂ M doesn’t change, as the gradient flow produces an isotopy

ψb−a : f −1(−∞,b) ≃ f −1(−∞, a). However, once we pass through a critical point of index k, a cell of

dimension k is attached.

Another way to think about this is that the index gives the dimension of the descending manifold

at p, which consists of the set of points which emanate from p down using the negative gradient

flow. Similarly, the ascending manifold at p is the set of points which flow down to p using the

gradient flow. These ideas lead to the concept of a moduli space of flow lines between two critical

points, which we discuss now.

2.1.2 Morse homology

Let us now be a bit more precise about the remarks at the end of the previous section. Equip M

with a Riemannian metric g. The gradient vector field ∇f is dual, via g, to the one-form df:

g(∇f ,−) = df
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Denote its flow be ψt . The set of critical points of f , assuming M is compact, is finite and we can

consider the moduli spaces of flow lines between critical points.

M̂(p,q) = {x ∈M | lim
t→∞

ψt(x) = q, lim
t→−∞

ψt(x) = p}

We would like to say that this is the intersection D(p)∩A(q) of the descending manifold at p and

the ascending manifold at q. However, we run into a problem: these two manifolds may not be

transverse. Consider the following picture:

p

q

r

s

Figure 1: Failure of Morse-Smale condition

This depicts the torus with the height function, which is Morse. However, D(q) is the same as

A(r), so they are not transverse! If one perturbs the function a little bit though, then D(q) will

connect q to s andA(r) will connect p to r, resulting in disjoint, hence transverse, cycles. So while

the height function was Morse and gave us the information about the homotopy type of the torus,

it doesn’t allow us to talk about moduli of flow lines.

To fix this, we impose a generic condition, called the Morse-Smale condition, on f . It implies that

these manifolds are transverse and is equivalent to df being transverse to the 0-section in T ∗M.

We can now define

M(p,q) := M̂(p,q)/R

to be the space of flow lines between p and q, modulo reparametrization. If f is Morse-Smale,

this becomes a smooth manifold of dimension ind(p)− ind(q)− 1.

We can use this to define a chain complex as follows:

Definition 2.2 (Morse-Smale-Witten complex):

Ck =
⊕

p∈Crit(f )

Z · p with differential dp =
∑

ind(p,q)=1

#M(p,q)q

Here, we define the relative index as ind(p,q) := ind(p)−ind(q). We can either use Z/2 coefficients,

or have to count the flow lines with a given orientation. The reason that the differential squares

to zero is that the moduli space of flow lines can be compactified to a 1-dimensional manifold,

whose oriented boundary is empty!

13



compactification

a

c

b b’

Figure 2: broken flow lines

More precisely, the coefficient of c such that ind(a,c) = 2 in d2a is given by∑
ind(a,b)=ind(b,c)=1

#M(a,b)#M(b,c)

This vanishes, as the moduli space of flow lines between a and c is an open 1-manifold (since

ind(a,b)−1 = 1) whose compactification has boundary precisely the broken flow lines as in figure

2 (one needs some analysis to prove this last "gluing" statement). Importantly, one has to use the

fact that any flow line starts and ends at a critical point. Later on, when we deal with Lagrangian

Floer cohomology, this will not be true, and we will need an extra assumption (finite energy).

We can see that the cellular complex and Morse complex, for the cell structure on M induced by

f , agree as graded vector spaces, as they are both free on the number of critical points of a given

index. The cells are given by compactifications of descending manifolds and in fact counting

flow lines between critical points whose indices differ by one is akin to the boundary map in

cellular homology! Hence Morse homology is the same as Betti homology (see Theorem 7.4 in [5]

or Appendix 4.9 in [3]):

MH•(M) ≃H•(M)

Remark: One may just as well define a Morse cohomology, by reversing the direction of the

flowlines. Then, we still have MH• ≃H•. Moreover on the chain level, the Morse cochains form a

deformation retract of the singular cochains: there are maps

(C•sing,∂sing) (C•Morse,∂Morse)

p

h i

such that id−ip = ∂singh+h∂sing. The singular cochains have a cup product, making them an asso-

ciative dg algebra. When one tries to carry this over to the Morse cochains, the product becomes

associative only up to homotopy, endowing the Morse cochains with an A∞-algebra structure. For

more on this, see [11] and [14].
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2.2 Lagrangian Floer cohomology

We will consider an infinite generalization of Morse theory, in the sense that the function is de-

fined on an infinite dimensional manifold (a path space). In a single sentence, Lagrangian Floer

homology is Morse theory for the action functional which measures the symplectic area of a J-

holomorphic strip.

2.2.1 The action functional and monotonicity

Let L0,L1 be two compact Lagrangians intersecting transversely inside a symplectic manifold

(M,ω). We consider the space of all paths starting at L0 and ending at L1. In fact, we will have

to consider a certain subcover of its universal cover, an element of which is given by γ ∈ P (L0,L1)

together with a homotopy class of a path Γ from a fixed basepoint γ0 to γ , i.e. Γ : [0,1]×[0,1]→M

subject to Γ (0,−) = γ0,Γ (1,−) = γ . We denote the connected component of γ0 by P (L0,L1;γ0).

Hence, elements of the universal cover will be pairs (γ,Γ ), but we will have to mod out by a

certain equivalence relation, which we now describe.

We would like to measure the symplectic area between the two paths

A : P̃ (L0,L1)→ R

A(γ,Γ ) =
∫
Γ

ω =
∫

[0,1]×[0,1]
Γ ∗ω

L0

L1

q p

γ0 γΓ

Figure 3

However, a priori, this is not well defined. If (γ,Γ ′) is another pair, we see that

A(γ,Γ )−A(γ,Γ ′) =
∫
C
H ∗ω

where Γ #Γ ′ =H : C→M is a map from the cylinder obtained by gluing the boundaries of the two

squares on which Γ and Γ ′ agree. We can also think of this as a loop in the path space, starting

and ending at γ0. By the closedness of ω, this is independent of the homotopy class of H and
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defines an integration homomorphism

Iω : π1(P (L0,L1;γ0))→ R

Iω(H) =
∫
H
ω

Furthermore, we also have that (H ∗TM,h∗0T L0 ⊔ h∗1T L1) is a symplectic bundle pair, where hi are

the restrictions of H to the top and bottom of the cylinder. This then has a Maslov index 1.8:

Iµ,L0,L1
: π1(P (L0,L1;γ0))→ Z

Iµ,L0,L1
(H) = µ(H ∗TM,h∗0T L0 ⊔ h∗1T L1)

Now might be a good time to introduce the concept of a monotone triple:

Definition 2.3 (Monotone triples): We say (M,L0,L1) is monotone if the two homomorphisms

Iω and Iµ,L0,L1
defined above are proportional by a real number λ. We denote by Nµ the minimal

Maslov number, i.e. the positive generator of im Iµ. Similarly, we define Σi to be the positive

generators of Iµ restricted to π2(M,Li).

Remark (Monotone Lagrangian submanifolds): There is an analogous notion of a monotone

Lagrangian submanifold, where the cylinder gets replaced by a disk, so we have only one

boundary component and a map f : (D,∂D)→ (M,L). The Maslov homomorphism is then

defined via the Maslov index of the pair (f ∗TM,f |∗∂DT L).

The discussion above tells us that in order to define the action functional, we need to mod out

by the relation (γ,Γ ) ∼ (γ,Γ ′) whenever Iω(Γ #Γ ′) = 0. Furthermore, we mod out by (γ,Γ ) ∼ (γ,Γ ′)

whenever Iµ(Γ #Γ ′) = 0, to ensure the grading works out.

Definition 2.4 (Novikov cover): The resulting cover, the Novikov covering space, is denoted

P̃ (L0,L1;γ0)

2.2.2 Comparison with Morse theory

The action functional is now well-defined on the Novikov cover. In analogy with Morse theory,

we would like to study the critical points of this action functional (the points where dA = 0), as

well as its "gradient flow lines". These will turn out to be the constant paths at intersection points,

together with J-holomorphic strips connecting intersection points.

More precisely, there is a closed action 1-form defined by

TγP (L0,L1;γ0)→ R

αγ (ξ) =
∫ 1

0
ω(γ̇(t),ξ(t))dt,
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Note that the covering map π is a local diffeomorphism and hence we can identify the tangent

spaces of P̃ (L0,L1;γ0) and P (L0,L1;γ0). Moreover, a tangent vector ξ on the path space is a vector

field along the path γ . This is related to the action functional as follows:

dA = −π∗α

where π : P̃ (L0,L1)→P (L0,L1) is the projection map2.

This shows that the critical points of the action functional are precisely the constant loops at

p ∈ L0 ∩ L1. If we want to create a Morse-type complex, we now need to understand the gradient

flows.

Choosing a generic family of compatible almost complex structures Jt on M allows us to define

an L2 metric g on TγP (L0,L1) by integrating the associated Riemannian metric over all t:

⟨ζ,ξ⟩ =
∫ 1

0
ω(ζ(t), Jtξ(t))dt

Let’s consider the negative gradient flow of A. This is a vector field on P (L0,L1) and its value at

γ is a tangent vector in TγP (L0,L1) i.e. a vector field along γ . By the definition of our metric, we

must have that

g(∇A,−) = dA

In other words, by using the formula for dA we must have that for all ξ:∫ 1

0
ω(∇Aγ (t), Jtξ(t))dt =

∫ 1

0
ω(γ̇(t),ξ(t))dt

Hence, by compatibility of ω with Jt and nondegeneracy, we get that ∇Aγ (t) = Jt(γ(t))γ̇(t).

Now, a gradient trajectory u is a curve in the path space interpolating between constant paths,

i.e. it is a map u : R→ P (L0,L1). With this in mind, if the coordinate on R is denoted by s the

negative gradient flow equation becomes

u̇ = ∂su = −∇Au = −Jt(u)∂tu

All in all, we can package this information as follows:

• J-holomorphicity: ∂su + Jt∂tu = 0

• Lagrangian boundary condition: u(s,0) ∈ L0, u(s,1) ∈ L1

• Asymptotic behaviour: lims→±∞u = p,q

2This is true because of the following calculation: firstly, the differential of the action functional is dAγ (ξ) =
∂
∂s
A(γ,Γ )|s=0 where ξ = ∂sΓ = dΓ (∂s) is a vector field along γ . Differentiating in the integral and using Stokes’ we get:∫

I2
(∂sΓ

∗ω)|s=0 =
∫
I2

Γ ∗(Lξω) =
∫
I2

Γ ∗(dιξω) =

=
∫
I
γ∗(ιξω) = −

∫ 1

0
ω(γ̇(t),ξ(t))dt
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• We also impose the finite energy condition: E(u) =
∫
u∗ω <∞ (as mentioned before, this is

needed to ensure that every gradient trajectory starts and ends at a critical point)

Note that, by the asymptotic condition, we can extend u to a map (D2,∂D2)→ (M,L0 ∪ L1) and

hence represents an element of π2(M,L0 ∪L1).

L0

L1

q p

u

Figure 4: A ’gradient trajectory’ between two ’critical points’ is a J-holomorphic strip

2.2.3 Moduli spaces of strips and the Floer cochain complex

We now need to understand the moduli of gradient trajectories, which in our new language means

moduli of J-holomorphic strips between p and q. Unfortunately, things are not as simple as in the

case of Morse homology - if we are not careful in the way we count these strips and naively define

dp =
∑
ind(p,q)=1 #M(p,q)q we immediately run into some problems:

• Why is the sum well-defined?

• What is the index and the grading?

• Moreover, why is it even a chain complex?

Well-definedness: Indeed, the sum is not well-defined and may be infinite. To make sure this

doesn’t happen, we count pseudoholomorphic strips representing a fixed class [u] ∈ π2(M,L0∪L1)

(all of these have the same symplectic area due to Stokes’ theorem), and we denote the space of

these solutions (up to reparametrization, i.e. modding out by R) by M(p,q; [u]). Then, to keep

track of the symplectic area of any such class, we insert a formal variable T ω·[u]. By Gromov

compactness, there are only finitely many homotopy classes of J-holomorphic strips below a given

symplectic area, so this will lead to the sum being well-defined with coefficients in the Novikov

field Λ, the field consisting of formal sums
∑
aiT

λi ,λi →∞.

Index and grading: Now, to take care of the second problem, recall that the index in Morse

theory is measuring the dimension of the moduli space of gradient trajectories, before modding

out by R. In our case, putting transversality issues aside, the dimension of this moduli space is

given by the index of the linearization of ∂J , whch is a Fredholm operator. This index can also

be computed using the Maslov index, denoted by ind([u]), which is a topological invariant. The
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fact that the index of an elliptic operator is a topological invariant is highly nontrivial, and comes

from Atiyah-Singer’s index theory.

The idea in the definition of ind([u]) is similar to the Maslov homomorphism Iµ,L0,L1
. However,

thinking of u as a map from the surface with strip-like ends [0,1] ×R, we cannot appeal to the

Maslov index of a symplectic bundle pair 1.8, as this is not a compact surface. To remedy this,

we need to compose with canonical short paths on the ends of the strips, where u asymptotes to

p and q.

In practical terms, we can trace around the ends of the strip R × [0,1] and produce a loop of

Lagrangians as follows: go from TpL0 to TqL0, then follow up by a canonical short path to TqL1,

then do the same in reverse for L1, i.e. go to TpL1 and finally return to TpL0. The resulting element

of π1(L(n)) ≃ Z is the index of [u].

Example (Index 1 strip): In the figure below, we start with a purple vector in the tangent

space TqL1 then move to TpL1, which is then moved via the canonical short path (multi-

plication by i) to the green vector in TpL0 and to TqL0 and finally rotate again to end up

in the black vector. This can be thought of as a full rotation of the horizontal Lagrangian

R = {y = 0} inside R2. Another way to think about the index is to count the number of

times the Lagrangian tangent spaces are non-transverse - in the picture on the right, this

occurs only once, precisely at the midpoint.

L0

L1

q p

L0

L1

q p

Figure 5: A strip with Maslov index 1

Now, for the matter of grading, we would like to assign integers deg(p),deg(q) such that ind[u] =

deg(p)−deg(q). However, let us see what can go wrong.

Given a J-holomorphic strip u between p and q, and an element v : (D,∂D)→ (M,L0) or a sphere

w : S2 →M we can form the connected sums u#v,u#w, as in figure 6. In particular, we can see

how the index has changed (this is Theorem 3 in Floer’s paper [7]):

ind([u#v]) = ind([u]) +µL0
(v)

ind([u#w]) = ind([u]) + 2⟨c1(TM),w∗[S
2]⟩

The first equality is fairly straightforward, whereas to see the second one, one has to first note

that the quotient map U (n) → U (n)/O(n) ≃ L(n) induces multiplication by 2 on fundamental

groups, as the first group has det inducing an isomorphism on π1, whereas the second one has
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det2 (recalling 1.4). Then, the equality follows by the fact that c1 is measuring the difference in the

trivializations between (u#w)∗TM and u∗TM on the boundary of the strip I ×R, which are being

used to identify the tangent spaces as Lagrangians inside L(n) and calculate the Maslov index. In

other words, the first Chern class is measuring the degree of the change of trivialization map S1→

Sp(2n) from the circle along which the sphere w and strip v are glued - for this interpretation of

the first Chern class, see [15], chapter 2.7.

Since both of these quantities are meant to be equal to degq−degp, if we want an absolute grading,

then we are required to put 2c1(TM) = µL = 0. If not, then the grading is defined only modulo

some integer dividing these two classes.

L1

q p

L1

q p

u u

v w

Figure 6: Obstructions to absolute grading

We notice that 2c1(TM) = 0 is equivalent to the bicanonical line bundle Λn(TM)⊗2 being trivial.

We now record the following useful fact:

Proposition 2.5 (Absolute grading): Let L →M be the fiber bundle whose fiber Lp consists

of the linear Lagrangians in TpM. Then TFAE:

• There is a global µ ∈ H1(L;Z) which restricts to the universal Maslov class on each fiber

Lp ≃ L(n)

• There is a cover L̃ → L which restricts to the universal cover on each fibre

• The bicanonical bundle Λn(TM)⊗2 is trivial, i.e. 2c1(TM) = 0.

Even though we defined the Maslov class as a homomorphism from π2(M,L) to the integers, there

is another related way of thinking about it. When the bicanonical bundle Λn(TM)⊗2 is trivial, it

admits a global section of unit length θ. This defines a phase function det2
θ : L → S1 and the

composition

L
sL−−→L

det2
θ−−−−→ S1

on fundamental groups gives us a class denoted in the same way µL = s∗Lµ ∈ H
1(L;Z). Here,

sL(p) = TpL is the Lagrangian inside TpM. This class serves as an obstruction to a grading on

the Lagrangian submanifold L and when both 2c1(TM) = 0 and µL = 0, there is a lift of the

phase function and there is a grading, also defined using Maslov indices, such that ind([u]) =
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deg(q)−deg(p). For a detailed treatment of the grading, refer to [20].

Why does the differential square to zero? We now come to the last problem of showing that the

object defined is a chain complex. The idea will be the same as in Morse theory, hence we will

need a way to compactify the moduli spaces of J-holomorphic curves. However, again one needs

to be careful when doing this, as the boundary strata are quite different than the ones in Morse

theory. This comes down to the fact that the energy (i.e. symplectic area) of u can concentrate in

three different spots, giving rise to three types of nodal degeneration. The first and most preferred

case is when the energy concentrates around s = ±∞, giving rise to a phenomenon known as strip

breaking. This behaves in exact analogy with how gradient flow lines break in Morse theory. The

other two - disc and sphere bubbling - occur when energy concentrates either on the boundary

i.e. on L0 or L1, or on the interior. These can be discarded once we put extra conditions, e.g. in the

setting of exact Lagrangian submanifolds (which are the main subject of this essay), or something

such as ω ·π2(M,Li) = 0 for i = 0,1. Notice that we need finite energy to even talk about energy

concentrating in one place or another.

L0

L1L1

L0

q r p

Figure 7: A broken strip

Finally, with all of this in mind, let us give the definition:

Definition 2.6 (Floer complex):

CF(L0,L1) =
⊕

p∈L0∩L1

Λ · p with differential

dp =
∑

ind[u]=1

#M(p,q; [u])T ω·[u] q

Here Λ is the Novikov field and we count the sum with orientation signs.

Remark: In the situation we will be dealing with, i.e. T ∗Sn, which is an exact symplectic manifold,

one can discard the Novikov coefficients and work straightforwardly with any coefficients.

Remark: We assumed L0 and L1 intersected transversely - if they do not, this can be fixed by per-

turbing one by a Hamiltonian isotopy, which however also perturbs the Cauchy-Riemann equa-
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tion by a Hamiltonian vector field.

We run through the argument that d2 = 0, which follows more or less for the same reason as in

Morse homology. Given an index 2 strip u between p and q, the compactification ofM(p,q; [u])

is a compact 1-manifold, whose boundary consists of broken strips, provided no bubbling occurs

(by Gromov compactness). Note that when strip breaking occurs, then we have [u] = [u′]+[u′′] in

π2(M,L0 ∪L1), and the index is additive, so both u′ and u′′ have index 1. But these broken strips

is precisely what d2 is counting, and it is also the oriented boundary of a compact 1-manifold,

which is 0!

Hence, we can define Floer cohomologyHF•(L0,L1) to be the cohomology of the cochain complex

CF. A priori, this depends on the choice of J and in the context of non-transverse intersection, on

the Hamiltonian perturbation H . However, the spaces of such objects are contractible and there

are continuation maps between the complexes w.r.t. (H,J) and (H ′ , J ′) that produce chain homo-

topies and hence induce an isomorphism on cohomology, and so the cohomology is independent

of any choices.

2.2.4 Properties of Floer cohomology

Recall by Weinstein’s theorem 1.6 that every Lagrangian has a small neighbourhood such that it

is symplectomorphic to a neighbourhood of the zero section. If we consider the self cohomology

HF•(L,L), we need to perturb L by a Hamiltonian isotopy, but it can be made small enough so

that ψ(L) is within a tubular neighbourhood of L. But, for Lagrangian submanifolds, the normal

bundle is isomorphic to the cotangent bundle, so we can idenfity L with the zero section and ψ(L)

with the graph of a closed 1-form inside T ∗L. Hence, in order to compute HF•(L,L) one can work

entirely within the symplectic manifold T ∗L. We can then cite the following result due to Floer,

comparing Floer and Morse cohomology, a summary of which can be found in [4], Proposition

1.13:

Proposition 2.7 (Floer vs Morse cohomology): Let L be embedded as the zero section inside

T ∗L and L′ the graph of ϵdf , where f is a Morse function on L, intersecting transversely at the

critical points of f . We have that for a sutiable J

CF(L,L′) ≃ CMorse(L)

inducing an isomorphism on cohomology.

Combining this with the observations above, we have the following corollary:
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Corollary 2.8 (Floer self-cohomology): For an arbitrary compact Lagrangian L ⊂ M such

that ω ·π2(M,L) = 0 we have that

HF•(L,L) ≃H•(L;Λ)

This has been further generalized by Pozniak [18], Corollary 3.4.13:

Proposition 2.9 (Pozniak): Given two Lagrangians L0,L1 intersecting cleanly, i.e. N = L0∩L1

has TN = T L0|N∩T L1|N , if the triple (M,L0,L1) is monotone (as in definition 2.3) and Σ0,Σ1 ≥

3, dimN + 1 < Nµ, then

HF•(L,L
′ ;Z/2) ≃H•(N ;Z/2)

Remark (Pozniak-Seidel spectral sequence): In fact, Seidel [19], Section 2, shows that when

N =
∐
Cp is a disjoint union of its connected components, then there is a spectral sequence

converging to the Floer homology HF•(L,L′) whose first page is

E1
pq =


Hp+q−i′(Cp)(Cp);1 ≤ p ≤ r

0

If the intersection is connected, as will be the case that we will use this result for, the

spectral sequence collapses at E2.

2.2.5 Higher operations and the Fukaya category

In the current situation, we have described a level 1 operation, i.e. an operation with one input

and one output, given by the differential which satisfies d2 = 0. However, there are also higher

operations on the chains which give a wealth of geometric information, which we will describe

now.

Firstly, there is a product, which counts pseudoholomorphic triangles with three marked points

defined by:

CF(L1,L2)⊗CF(L0,L1)→ CF(L0,L2)

p · q =
∑

ind([u])=0

#M(p,q, r; [u])T ω([u]) r

The moduli spaceM(p,q, r; [u]) is counting J-holomorphic maps v : (D,∂D)→ (M,L0 ∪L1 ∪L2) in

the homotopy class of u with three marked points which are sent to p,q, r respectively, see 9. We

also mod out by the automorphisms of D, i.e. the Mobius transformations.

By counting index 1 triangles and assuming no bubbling occurs, one can show, using the bound-

ary of the moduli space of an index 1 strip, that this satisfies the Leibniz rule, i.e. the fact that µ2

is a chain map with respect to the twisted differential on the tensor product complex:

d(p · q) = ±dp · q ± p · dq ⇐⇒ µ1 ◦µ2 = µ2 ◦ (µ1 ⊗ 1± 1⊗µ1)
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Figure 8: A disk with three marked points: 2 inputs and one output

The three terms come from three different possibilities of strip breaking occuring at the three

marked points. In other words, we have a 1-dimenisonal moduli space M(p,q, r; [u]) when the

index of u is 1, whose boundary gives a nullcobordism between the three terms.

The point is that when no bubbling occurs, the J-holomorphic maps faithfully reflect the operadic

structure of the domain spaces, which are the moduli spaces of disks with k + 1 points, modulo

Aut(D), denoted Kk . These are called Stasheff associahedra and can also be thought of as planar

trees. Since the Mobius transformations can fix three points, the other k−2 points can move freely

and hence Kk is a contractible k − 2 dimensional manifold. These come with natural compacti-

fications, where the moving points approach the fixed points and collide with them, which we

visualize by adding a zoomed in version of the disk at the collision point. Let’s illustrate one of

these spaces, the space K3, which compactifies to K3 ≃ [0,1].

µ2(µ2(−,−),−) µ2(−,µ2(−,−))µ1 terms occur somewhere in the interior

Figure 9: The compactified associahedron K3

Let’s say we have fixed −1, i,−i using Mobius transformations and 1 can move around. On the

boundary, we get the disks where the point 1 has collided with ±i. Given an index 0 strip u,

the moduli space M(p,q, r, s; [u]) has dimension 3 − 2 + 0 = 1. When we project this nullcobor-

dismM(p,q, r, s; [u]) to the domain associahedron K3, we get 3 separate nullcobordisms, and the

boundary terms represent the terms which have two µ2’s, whereas the interior contains all the

cases where µ1 appears. In other words, the boundary represents the degenerations happening in

the domain space, which is the associahedron, and the interior contains the cases where we have

degenerations in the target space (e.g. strip breaking).

All in all, we get a formula which tells us that µ2 is associative up to a homotopy given by µ3:

µ2(µ2(p,q), r)−µ2(p,µ2(q,r)) = ±µ3(µ1(p),q, r)±µ3(p,µ1(q), r)±µ3(p,q,µ1(r))±µ1(µ3(p,q, r))

A similar argument shows that this generalizes: we have multiplication maps obeying the rela-
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tions

µk : CF(Lk−1,Lk)⊗ ...⊗CF(L0,L1)→ CF(L0,Lk)[2− k]

µk(pk , ..,p1) =
∑

q∈L0∩Lk ,ind([u])=2−k
#M(p1, ...,pk ,q; [u])T ω·[u]q

The index is set to 2− k as the dimension of the moduli space turns out to be k − 2 + ind([u]). By

analysing the boundary of the compactification of moduli spaces of curves, one can show that

this satisfies the A∞ relations

k∑
l=1

k−l∑
j=0

(−1)j+deg(p1)+...+deg(pj )µk+1−l(pk , ...,pj+l+1,µ
l(pj+l , ...,pj+1),pj , ...,p1) = 0

or more succinctly with r = k − l − j∑
k=r+l+j,l>0

±µr+j+1(1⊗r ⊗µl ⊗ 1⊗j ) = 0

In particular, the product descends to a well-defined, associative operation on cohomology. All

of this information can be packaged into the so called Fukaya category:

Definition 2.10 (Fukaya category): For (M,ω) a symplectic manifold with some extra prop-

erties, one can consider the A∞-category Fuk(M) such that:

• ObFuk(M) consist of compact, closed, oriented, spin (i.e. w1(L) = w2(L) = 0) Lagrangians

which don’t admit bubbling (e.g. ω ·π2(M,L) = 0) and with vanishing Maslov class.

• Mor(L0,L1) = CF(L0,L1) with appropriately chosen perturbation data (see [23]), so that

they can be moved to intersect transversely.

There is a useful refinement of the above definition in which we equip each Lagrangian L with

a flat complex vector bundle (flatness is required so that parallel transport is independent of

homotopy classes). More precisely, we put

CF((L,E), (L′ ,E ′)) =
⊕

p∈L0∩L1

hom(E|p,E ′ |p)

Given two intersections q,p, with p an input and q an output, we need to define the coefficients

in µ1(x) for x ∈ hom(E|p,E ′ |p) which requires to find an element in hom(E|q,E ′ |q). We do this as

follows: first, parallel transport E along the boundary of u from q to p, then apply x and finally

parallel transport again:

η[u],p : E|q
p.t.
−−−→ E|p

x−→ E ′ |p
p.t.
−−−→ E ′ |q

Then we can define

µ1(x) =
∑

q∈L∩L′ ,ind[u]=1

#M(p,q; [u])T ω·[u]η[u],p

In a similar vein one defines the higher operations.

Remark: An A∞ category can be seen as a higher homotopical generalization of a dg category,

i.e. a category with a differential and a product satisfying the Leibniz rule. In other words, a dg
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category is an A∞ category with 0 = µ3 = µ4 = .... A canonical example is Ch, the category of chain

complexes over a field K, which has Hom sets the chain complex whose n-th piece is

Homn(A•,B•) :=
∏
i

Hom(Ai ,Bi+n)

(df )i = dBfi + (−1)n+1fi−1d
A ∈Homn−1(A•,B•)

It is easy to see tha d2 = 0 and that the closed morphisms are precisely the chain maps.

2.2.6 The infinitesimal Fukaya category of a cotangent bundle

Up until now, our definition of the Fukaya category consisted of compact Lagrangians. However,

in the case of cotangent bundles T ∗M, we would like to consider non-compact exact Lagrangians

with nice behaviour at infinity, as for example a cotangent fibre. There are different approaches

to doing this - one is the infinitesimal Fukaya category of Nadler-Zaslow [17], and the other is the

wrapped Fukaya category of Abouzaid and Seidel. In chapter 4, we will be using the former, and

now give a very brief outline of the objects and morphism groups, following [17] and [9].

Let ω = dλ be the canonical exact symplectic form on T ∗M. This carries a Liouville vector field Y ,

the radial rescaling vector field, dual to λ, i.e. ω(Y ,−) = λ. The magic formula then tells us that

LYω = dιYω+ ιY dω = dλ =ω

We consider exact Lagrangians, i.e. L ⊂ T ∗M such that λ|L is exact. Moreover, we require that L is

a subanalytic subset of the compactification T
∗
M. This means that the Lagrangian is "Legendrian"

at infinity. To define the morphism groups CF(L0,L1), we need to modify the Lagrangians so that

L0 and L1 intersect transversely in T ∗M and do not intersect at all at infinity. To do this, we need

to introduce a very small perturbation of L0 in a specified direction. This is done by choosing a

function H : T ∗M → R, for example a function that outside of a compact subset is H(x,ξ) = |ξ |,

which generates a Hamiltonian isotopyφH that is the normalized geodesic flow outside a compact

subset. Hence, we put

CF(L0,L1) := CF(φH (L0),L1)

A technical issue arises when we consider composition maps: what we actually get is

CF(L1,L2)⊗CF(L0,L1) := CF(φH12
L1,L2)⊗CF(φH12

φH01
L1,φH12

L2)→ CF(φH12
φH01

L0,L2)

However, we would like to land in φH02
L0 instead - to fix this, one has to make the functions H

sufficiently small, so that the result is an isomorphism on the cochain groups.

Note also that the bicanonical bundle of T ∗M is trivial, which is needed for the purpose gradings.
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3 The Dehn twist, algebraically and geometrically

In this section, we will define the Dehn twist by recourse to Picard-Lefschetz theory, a holomor-

phic analogue of Morse theory. Moreover, we will define and state various properties of Lefschetz

fibrations and utilize Seidel’s topological quantum field theory to show that the effect of the Dehn

twist on the Fukaya category fits into an exact triangle. This will result in Seidel’s long exact se-

quence in Floer cohomology.

3.1 Picard-Lefschetz theory, Lefschetz fibrations and the model Dehn twist

We now consider holomorphic maps from a complex manifold to C and the critical points of

such maps will give us important geometric information, but in a slightly different way than in

Morse theory. Recall that the homotopy type of the manifold M changes precisely when one hits

a critical point, and the critical values separate R into disconnected components (intervals). In

the complex case, removing the critical values won’t disconnect it, but the analogue of hitting a

critical point becomes traversing a loop around a critical value. The change in the topology of the

fibers will be reflected by the monodromy, and the main point is that it is given by Dehn twisting

by a vanishing cycle. We begin with the local theory, where we have an analogue of the smooth

Morse lemma:

Lemma 3.1 (Complex Morse lemma): If X is a complex variety and p is a non-degenerate

critical point (w.r.t. the complex Hessian), then there are holomorphic coordinates in a neigh-

bourhood of p such that

f = f (p) +
∑

z2
i

For a proof, see [27]. Note that in this situation, there is no invariant like the index. This lemma

shows that there is a standard example, to which most computations eventually reduce to.

Example (Canonical example): Consider the map π : Cn → C, (z1, ..., zn) 7→
∑
z2
i . This has a

single critical point 0. To be able to compute the monodromy, we need some connection

on Cn. To do this, we equip Cn with its standard symplectic form

ω =
∑

dxi ∧ dyi =
i
2

∑
dzi ∧ dzi

Then, the tangent spaces away from the critical points split as follows:

TzCn = Vertz ⊕Horz

Vertz = kerdπz,Horz = Vert⊥z

The complement is given with respect to ω:

Horz = {v ∈ TzCn|ω(v,w) = 0∀w ∈ Vertz}
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Example (Continued): In fact, this procedure can be done for any symplectic fibration and

produce an Ehresmann connection. In our example, the horizontal subspace will be given

by Horz = Cz.To see this, note that w ∈ kerdπz ⇐⇒
∑
wizi = 0. The set of these form an

n−1 dimensional subspace of TzCn and its complement consists of v such that ω(v,w) = 0.

But this is equivalent to∑
viwi −wivi = 0 for any w s.t.

∑
wizi = 0

We clearly see that v = z is a solution and must in fact be the "only" one, since the comple-

ment is 1-dimensional.

Now, consider the loop parametrizing the unit circle γ(t) = e2πit . The monodromy is, by

definition, the time 1 value of a horizontal lift of γ :

Cn

[0,1] C

π

γ

γ#

It must satisfy ż = γ̇#(t) = λtz for some λt ∈ C since it is horizontal and also π(γ#(t)) =∑
γ#
i (t)2 = e2iπt since it lifts γ . Differentiating both sides, we get

d
dt

[
∑

γ#
i (t)2] = 2

∑
γ̇i

#(t)γ#
i (t) = 2πie2πit

2λt
∑

zizi = 2πie2πit

λt =
iπe2πit

|z|2

In other words, the lift satisfies the differential equation

ż =
πie2πit

|z|2
z

We can see that |z|2 is constant for such solutions, as its derivative has

d
dt
⟨z,z⟩ = ⟨ż, z⟩+ ⟨z, ż⟩ =

iπ

|z|2
[
e2πit⟨z,z⟩ − e2πit⟨z,z⟩

]
But

e2πit⟨z,z⟩ = e2πit
∑

zizi = 1

since π(z) = e2πit , hence d
dt |z|

2 = 0 and it must be constant. This allows us to reduce

the question to a linear ODE by putting f = e−2iπtz. After solving this, we get that the

monodromy is determined by the equality

|y(1)|x(1) + i|x(1)|y(1) = −exp(−
2πi|x(0)||y(0)|
|z(0)|2

)(|y(0)|x(0) + i|x(0)|y(0))

where z(t) = x(t) + iy(t)

Now we introduce the next concept - a Lefschetz fibration is informally a family of hypersur-

faces with only a finite number of critical points, which are modeled on the above situation, the

simplest type of singularity in algebraic geometry (the ordinary double point).
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Definition 3.2 (Symplectic Lefschetz fibrations): An exact symplectic fibration with singu-

larities consists of the following data:

• A map π : E → B between exact symplectic manifolds which is pseudoholomorphic with

respect to the almost complex structures.

• π is transverse to the boundary of B i.e. for all x ∈ π−1 ∈ C ⊂ ∂B we have dπ(TxE) +

Tπ(x)(C) = Tπ(x)B. Thus π−1∂B := ∂vE is a boundary stratum, the vertical boundary,

which has complement ∂h := ∂E −∂vE.

• π∂hE is a smooth fibration. Moreover, if x ∈ ∂hE then (TxE)h ⊂ Tx(∂hE), where the left

side is the horizontal subspace orthogonal to kerdπ defined via the connection given by

the global form ω on E.

An exact Lefschetz fibration over a compact Riemann surface π : E → Σ consists of a map π

such that the critical points of π are nondegenerate and locally integrable, i.e. π has the local

form as described in the canonical local model: π = π(p) +
∑
z2
i .

The importance of Lefschetz fibrations to symplectic geometry was first noticed by Arnol’d in his

paper [1]. The point is that the nonsingular fibers of the local model can naturally be identified

with symplectic manifolds, the cotangent bundles T ∗Sn−1, and the monodromy is a symplecto-

morphism, which is called a Dehn twist. Here’s a picture which illustrates the case n = 2:

Z

F
1 F0

γ

Figure 10: The singular fibre (left) and a generic fibre (right)

The cylinder on the right is π−1(1) which consists of the points

π−1(1) = {x+ iy| |x|2 − |y|2 = 1,⟨x,y⟩ = 0}

On the other hand, the tangent, and hence cotangent bundle, can be calculated by differentiating

the defining equality ⟨u,u⟩ = 1 of the sphere to get

T ∗Sn−1 = {u + iv| |u|2 = 1,⟨u,v⟩ = 0}
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These two manifolds are symplectomorphic via (x,y) 7→ ( x|x| , |x|y). The Dehn twist, following the

computation 3.1, takes the shape of the symplectomorphism which obeys the following equation,

where |v| = |v′ |3:

ψ(u + iv) = u′ + iv′ ,u′ + i
v′

|v′ |
= −exp(− 2πi|v|√

1 + 4|v|2
)(u + i

v
|v|

)

One can see that when the cotangent coordinate v is very big, the Dehn twist is close to the

identity, whereas when v is close to 0, the effect is the antipodal map. In the picture 10 we have

that ψ(F0) = F1.

Another equivalent way to view the Dehn twist4 is to consider the Hamiltonian function H :

T ∗Sn−1→ R,H(p,q) = |p|, where p is the fiber coordinate. This generates the normalized geodesic

flow σ away from the zero section, which flows a vector along the geodesic emanating from it at

unit speed. We can rescale H by a suitable function r : R→ R to make the speed depend on the

size of the vector. We require that r is 0 for large enough t, and moreover r(−t) = r(t)− t, and then

H(r(|p|)) will generate an isotopy φt(p,q) = σtr ′(|p|)(p,q). Since r ′(0) = 1/2, the time 2π map can be

extended via the antipodal map on the zero section and defines a generalized Dehn twist:

τ(p,q) =


σ2πr ′(|p|)(p,q), p , 0

(0,−q),p = 0

Different choices of r will produce different formulas, but will result in Hamiltonian isotopic

Dehn twists.

Now we come back to the canonical fibration π : Cn → C and relate the Dehn twist with mon-

odromy. Notice that over the singular point 0 (see 10) the fibers degenerate to a nodal singularity,

and in the picture we can see that the zero-section Sn−1 ⊂ T ∗Sn−1, which corresponds to the real

slice in π−1(1), become smaller and smaller until they shrink to a point. This forms a Lagrangian

submanifold of each generic fibre and bears the name of a vanishing cycle. Here is an important

theorem concerning vanishing cycles:

Theorem 3.3 (Vanishing cycles and Dehn twists): Let E→ B be a symplectic Lefschetz fibra-

tion. Given a path γ with γ(1) = c, but not hitting any other critical point, then the vanishing

cycle Vγ is defined as the set of points in the fibers which parallel transport to the singularity of

π−1(c). This is a Lagrangian sphere and the monodromy of a loop encircling c is given, up to iso-

topy, by the Dehn twist around Vγ . Different loops may produce different symplectomorphism,

but they are all Hamiltonian isotopic.

A proof of this can be found in Proposition 1.15, [21]. Using the Weinstein neighbourhood theo-

rem, every time we have a Lagrangian sphere we can create generalized Dehn twists, by general-

izing the local model to any exact symplectic manifold ([21], Proposition 1.11).

3This is all taken from [15], page 269
4This definition is taken from Seidel’s lectures on 4-dimensional Dehn twists [24]
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Proposition 3.4 (Standard fibration): Whenever L ⊂M is an exact Lagrangian sphere inside

of an exact symplectic manifold, then there is a standard fibration EL→ D over the disk whose

fibres are symplectomorphic to M and such that the monodromy is given by a Dehn twist along

L.

All in all, we have seen that Dehn twists arise from monodromies around critical points, and that

the converse is also true - the monodromy around a critical point is given by a Dehn twist along

a vanishing cycle.

3.2 Pseudoholomorphic sections, relative Gromov-Witten maps and Seidel’s

TQFT

Up until now, we have been counting pseudoholomorphic maps from I ×R to a target symplectic

manifold, obeying Lagrangian boundary conditions. This allowed us to define Lagrangian Floer

cohomology.

However, this can be seen as a particular example of counting pseudoholomorphic sections:

namely, if we consider the trivial fibration M × T → T where T = I × R, then a certain set of

sections with Lagrangian boundary counditions exactly recover the same moduli space.

More generally, instead of thinking about pseudoholomorphic maps from the strip I ×R, we can

consider fibrations E → S over a surface with "strip-like ends" and count pseudoholomorphic

sections. This will result in relative invariants, i.e. maps between the Floer chain groups, just like

the product µ2.

We now present the definitions of these objects and lay out some of their properties. There is a

lot of underlying technical machinery that needs to be set up for all of these things to work, but

we refer to [21] for the details.

3.2.1 Definition of the relative invariants

Definition 3.5 (Moduli of sections): Given an exact symplectic Lefschetz fibration E → Σ

with fibers symplectomorphic to M, we define a Lagrangian boundary condition to be a half-

dimensional submanifold F ⊂ E contained in π−1∂Σ such that each Fz is an exact Lagrangian

submanifold of Ez ≃M which parallel transport into each other. A pseudoholomorphic section

u : Σ→ E subject to the boundary condition is a J-holomorphic section such that u(∂Σ) ⊂ F.

We defineME/Σ to be the moduli space of such sections, which can be thought of as the zero set

of a section ∂ of an infinite Banach bundle, just as in the usual case. The zero stratum ΦE/Σ of

isolated points of this moduli space consists of a finite set of points.
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Example (Local model): Let’s consider the restriction E of the local model Cn+1→ C to the

unit disk D, with Lagrangian boundary given by the real slices, corresponding to the zero

sections under the symplectomorphism to T ∗Sn. The pseudoholomorphic sections then

amount to holomorphic sections u :D→ E with the boundary condition imu∂D ⊂
√
zSn, in

other words by projecting we get holomorphic maps

ui :D→ E
pi−−→ C

which obey ui(z) ∈
√
zR for z ∈ S1. By looking at imaginary parts, it is easy to see

that this condition is equivalent to ui = uiz on S1 and hence by looking at the expan-

sion ui(z) =
∑
aiz

i ,ui(z) =
∑
aiz

i =
∑
aiz
−i on S1 and comparing coefficients, we get that

ak = 0, k > 1 and a0 = a1. Hence, the function ũi = ui − (a0 + a0z) is holomorphic and equal

to 0 on the boundary ∂D, where it achieves its maximum, hence must be identically zero.

All in all, we must have that u(z) = az + a. The fact that u is a section, along with the

boundary conditions, then imply that a must satisfy ||a||2 = 1/2,
∑
a2
i = 0. This amount to

three equations on the variables x1, y1, ...,xn+1, yn+1 which give the real and imaginary parts

of a and hence the dimension is 2n+ 2−3 = 2n−1. This space has no isolated points, so in

this case Φ = 0.

This local computation also generalizes to show that the standard fibration 3.4 also has trivial Φ .

We now define the relative Gromov-Witten invariants, which arise as counts of pseudoholomor-

phic sections which have fixed asymptotic behaviour at the strip-like ends and have Lagrangian

boundary conditions.

Definition 3.6 (Relative invariants): Consider a symplectic Lefschetz fibration E→ Σ over a

compact Riemann surface with a finite set of marked points on the base e+
i , e
−
i around which the

fibration is trivial. Let S = Σ \ {e±i } be the surface with strip-like ends where each e gets replaced

with a little strip ϵe ≃ T ≃ I ×R and which comes with trivializations T ± ×M → E over each

such end. Given a Lagrangian boundary condition F and using this local triviality near the

strips, we get pairs of Lagrangians Fϵs,k = Le,k , k = 0,1 for each marked point e i.e. strip-like end

ϵe. This allows us to define maps on the chain groups

CΦE/S :
⊗

CF(Le+,0,Le+,1)→
⊗

CF(Le−,0,Le−,1)

⊗ye+ 7→
∑

ΦE/S (ye− , ye+ )⊗ ye+

Amazingly, doing this fits into the framework of a topological quantum field theory: the idea is

that whenever we have fibrations over two such surfaces with strip-like ends, we can glue the

bases and bundles together so that gluing on the topological level corresponds to composition of

relative maps on the algebraic level.

For example, recall that the original definition of the product µ2 used counts of pseudoholomor-
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phic triangles with three marked points, which corresponds to a pair of pants surface, as in 11.

(the inputs are on the right as we want to work with cohomology).

L0

L2

L1

Figure 11: Pairs of pants correspond to counting pseudoholomorphic triangles with three marked

points

The relative invariant (for the trivial fibration) then is precisely

CF(L1,L2)⊗CF(L0,L1)
µ2

−−→ CF(L0,L2)

Similarly, the unit in HF•(L,L) occurs as the relative invariant associated to the unit half-disk, i.e.

the map with a trivial input and one output and a single Lagrangian boundary condition L.

Let’s see what happens when we glue two surfaces. The TQFT axioms state that we should

get an invariant associated to the bundle (E,S = S1#S2) which is glued from the two bundles

(E1,S1), (E2,S2) and moreover that the two are chain homotopic, hence induce the same maps on

Floer cohomology:

CΦE/S ∼ CΦE2/S2
◦CΦE1/S1

L0

L2

L1

L0

L2

L1

Figure 12: Gluing two surfaces with strip-like ends

In the situation from the picture above, this means that

CΦE/S : CF(L0,L2)→ CF(L0,L2)

CF(L0,L2)
CΦE2/S2−−−−−−−→ CF(L1,L2)⊗CF(L0,L1)

CΦE1/S1−−−−−−−→ CF(L0,L2)

Given p ∈ L0 ∩ L2, the coefficient of s is counting ways to get from p to s via two pseudoholomor-

phic triangles (p,q, r) and (q,r, s) interrupted by the Lagrangian L1.

33



Remark (Families of fibrations give chain homotopies): Strictly speaking, the definition of

the relative invariants depends on the choice of almost complex structure. However, [21],

Lemma 2.30 shows that the resulting invariants are chain homotopic, so agree on co-

homology. Another important feature of this TQFT is that whenever we have a smooth

family of fibrations with strip-like ends Er → Sr , r ∈ R, we get relations of the sort

∂ ◦ (map) + (map) ◦ ∂ + (boundary terms) and in particular when we have a 1-parameter

family, we get a chain homotopy h between the relative invariants on both ends:

∂h+ h∂ = CΦ1 −CΦ2

This fact will be extremely useful in the next section.

3.3 Seidel’s long exact sequence in Floer cohomology

Now we give a sketch proof of the long exact sequence in Lagrangian Floer cohomology, following

Seidel’s original paper [21]. Let Z be an exact Lagrangian sphere, which we can Dehn twist along.

Given a Lagrangian A we want to prove that there is an exact triangle:

HF•(Z,A)⊗Z

A

τZ (A)

What this means is that we have a long exact sequence in cohomology when we Hom into any

other test Lagrangian B (which is contravariant, so we have to flip the arrows):

HF•(Z,A)⊗HF•(Z,B)

HF•(A,B)

HF•(τZ (A),B)

To do this, using the relative Gromov-Witten invariants we will define chain maps

CF(Z,B)⊗CF(τZ (A),Z)→ CF(τZ (A),B)→ CF(A,B)

We will show that the effect on cohomology fits into a long exact sequence, using an algebraic

lemma (Lemma 2.32 in [21]). However, note that this does not give the same long exact sequence

as the desired one: what we get is

HF•(τZ (A),Z)⊗HF•(Z,B)

HF•(A,B)

HF•(τZ (A),B)
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To finish up, we need to use the Poincare duality isomorphism, along with a Dehn twist:

HF•(τZ (A),Z) ≃HF•(τZ (A), τZ (Z)) ≃HF•(A,Z) ≃HF•(Z,A)

Note also that the Dehn twists changes the grading by 1 − n, as is shown in [20]. Moreover, the

left pointing diagonal map is a pair of pants coproduct, whereas the lower map is a product.

3.3.1 Definition of the maps and a sketch of the main argument

The idea is to use particularly nice fibrations that we can work with, and then use a vanishing

result. The whole point of introducing Dehn twists as monodromies of Lefschetz fibrations will

then become apparent.

The first fibration will be a trivial one, denoted Eb→ Sb, producing a pair of pants product b:

CF(Z,B)⊗CF(τZ (A),Z)
b=µ2

−−−−→ CF(τZ (A),B)

This appears as the right hand surface in figure 13.

The second fibration, which we denote Ec→ Sc is a bit trickier. We first take the standard fibration

over the disk with radius 1/2, fiber M and monodromy τZ , then slightly modify it so that we

can glue it to the fibration whose base is R × [−1,1] \D(1/2) and having Lagrangian boundary

conditions B on the top and interpolating between τZ (A) to A on the bottom from the positive to

the negative side. Once these are glued together, we obtain the usual strip Sc = R × [−1,1] with

Lagrangian boundary conditions as in the left hand side of 13. The circle signifies the monodromy

around the critical value, which gives the Dehn twist. The map we get is

CΦEc/Sc : CF(τZ (A),B)
c−→ CF(A,B)

When we glue the two fibrations together (E,S) = (Ec#Eb,Sc#Sb), the TQFT axioms state that the

resulting invariants should be chain homotopic:

CFE/S ∼ CFEc/Sc ◦CFEb/Sb = c ◦ b

B

τZ (A)

ZτZ

B

A τZ (A)

Figure 13: The two surfaces, glued together
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The final step is to show that this invariant vanishes, which follows from the geometric arguments

in [21]. To conclude, we invoke the following algebraic lemma, again from [21]:

Lemma 3.7 (Seidel’s algebraic lemma): Take three R-graded vector spaces C′ ,C,C′′ , each of

them with a differential of order (0;∞). Suppose that we have differential maps b : C′ → C,c :

C → C′′ and a homotopy h : C′ → C′′ between c ◦ b and the zero map, such that that the

following conditions are satisfied for some ϵ > 0:

• C′ ,C′′ have gap (0;3ϵ), and C has gap (0;2ϵ).

• For all r ∈ supp(C′) and s ∈ supp(C′′), |r − s| ≥ 4ϵ.

• One can write b = β + (b − β) with β of order [0;ϵ) and (b − β) of order [2ϵ;∞); and

c = γ + (c − γ) with the same properties. The low order parts (which do not need be

differential maps) fit into a short exact sequence of vector spaces

0→ C′
β
−→ C

γ
−→ C′′→ 0

• h is of order [0;∞).

Then the maps on cohomology induced by b,c fit into a long exact sequence

H•(C′) H•(C) H•(C′′)
b∗ c∗
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4 Exact Lagrangians in T ∗Sn

Following Seidel’s paper [22], we are going to use the machinery of Fukaya categories to prove

something about Lagrangians inside T ∗Sn. Ideally, one would like to show that any exact La-

grangian is Hamiltonian isotopic to the zero section - this is the statement of the famous Nearby

Lagrangian Conjecture. This can be proved in the case n = 1 and hence we will be concerned

with n > 1. In its current state, the full Nearby Lagrangian Conjecture seems out of reach - we

will prove the weaker statement that any such Lagrangian L becomes isomorphic to the zero sec-

tion Z in a triangulated extension of the Donaldson-Fukaya category. This then has the following

list of consequences:

• [L] = ±[Z]

• H•(L;C) ≃H•(Sn,C)

• Any two exact Lagrangians (satisfying some extra conditions) intersect nontrivially

4.1 Preliminaries and basic results

As in any paper on Floer theory, we will begin with a list of assumptions. Firstly, let F0 be a

cotangent fiber. We will be working in the infinitesimal Fukaya category as in the end of Chapter

2, and the Lagrangians we consider will have the following properties, so that the Fukaya category

is as nice as possible:

• L is either compact, or agrees with F0 almost everywhere.

• ω ·π2(M,L) = 0 to ensure no bubbling occurs.

• L is oriented and spin, i.e. w1(L) = w2(L) = 0, to ensure the moduli spaces of J-holomorphic

curves obtain an orientation.

• µL = 0 and moreover a choice of grading on L given by a choice of lift of the phase function

L→ S1 (see 1.9, and the paper [20])

This allows the Floer cohomology groups to be defined and, crucially, have a grading.

We can also equip the Lagrangians with branes, i.e. flat complex vector bundles ξ as in the end

of section 2, 2.10.
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Remark (Cohomology with local coefficients): Recall that flat bundles E correspond to repre-

sentations of the fundamental group, i.e. a homomorphism ρ : π1(X)→ End(A). Hence, we

can define cohomology with local coefficients by considering the chains on the universal

covering space X̃, which has a π1 action given by deck transformations:

H•(X;E) :=H•(HomZ[π1(X)](C•(X̃),A)

We will mostly be working with the trivial flat bundle, so this tool will not be crucial.

We will show that the Lagrangians satisfying the list of conditions all essentially come from only

two simple Lagrangians - the fibre F0 and its Dehn twist along the zero section τZF0 := F1. In

fancier terminology, F0 and F1 generate the Fukaya category.

To begin with, we need to understand our three generating Lagrangians and their Floer cohomol-

ogy. This comes in the form of the following lemma:

Lemma 4.1 (Floer cohomology of the three Lagrangians):

HF•(F0,F1) ≃H•(Sn−1,C)

HF•(F1,F0) = 0

HF•(Z,Fi) ≃HF•(Fi ,Z) ≃ C

Sketch of proof: Firstly, since Z and Fi intersect transversely at a single point, the Floer chain com-

plex will have only one entry and hence the last isomorphism follows. For the Floer cohomology

groups of F0 and F1 we need to make them transverse, as currently they agree outside of a com-

pact subset. This can be done by moving the first one by a normalized geodesic flow: if we do this

to F1 we end up as in the left hand side of 14, which makes the Lagrangians disjoint, hence the

Floer complex is trivial, and the second line isomorphism follows. Finally, the effect of moving

F0 will result in a picture like the right hand side of 14, where they intersect cleanly along Sn−1.

Thus, we can invoke 2.9 to conclude the last isomorphism.

Z

F
1 F0

0

perturbation perturbation

Figure 14: Perturbing the Lagrangians to intersect transversely
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4.2 Black magic using triangulated categories

We would like to show that any Lagrangian L is essentially some combination (using Dehn twists,

or some form of Lagrangian surgery) of the cotangent fibre F0. Miraculously, it turns out that

there is an algebraic approximation of these geometric notions - the idea of an exact triangle in

a triangulated category. However, Fuk(M) is not triangulated, so we need to work in some form

of triangulated extension. Abstractly, one can consider the Yoneda embedding, or restrict oneself

to the simpler model of twisted complexes, which provides an enlargement of the Fukaya cate-

gory where formal direct sums are allowed. More precisely, one can first embed Fuk(M) inside

TwFuk(M), which is an A∞ triangulated category, and then take cohomology to get an honest tri-

angulated category which contains the Donaldson-Fukaya category: H0Fuk(M) ⊂ H0TwFuk(M).

We call this the derived Fukaya category and denote it by D♭Fuk(M).

Remark (Mirror symmetry): The derived Fukaya category plays an important role in Kont-

sevich’s homological mirror symmetry conjecture - roughly, it states that string theory has

2 models, the A-model and B-model, corresponding to studying Lagrangian intersections

inside symplectic manifold versus complex subvarieties of a complex algebraic variety.

Certain symplectic and complex manifolds come in mirror pairs, and the homological

mirror symmetry conjecture states that the derived Fukaya category of one is equivalent

to the derived category of coherent sheaves of its mirror. Moreover, under this duality,

the Dehn twist, which we mention below, has an analogue on the algebraic geometry side

given by spherical twist functors.

Recall that in any triangulated category, given a morphism X
a−→ Y there is an object, unique up to

isomorphism (but maybe not unique isomorphism, which prevents this from being a functorial

operation) denoted by cone(a) such that X → Y → cone(a) is distinguished. Now let us consider

the following morphisms in our additive enlargement TwFukT ∗Sn:

HF•(L,L′)⊗L ev−−→ L′

L
ev′−−→HF•(L,L′)∨ ⊗L′

The map is the tautological evaluation map: given c ∈HF•(L,L′) represented by come intersection

point, the map is literally c as in the usual Fukaya category. In other words, ev is a family of maps,

one for each generator of the vector spaceHF•(L,L′).We will denote the cone of this map by TL(L′)

and similarly we define T ′L′ (L) = cone(ev′)[−1] (note that we have switched the L and L′). As was

shown in chapter 3 following Seidel’s paper [21], this turns out to recover the geometric concept

of the Dehn twist!
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Theorem 4.2 (Algebraic twist = Dehn twist): For any L in D♭Fuk(M) we have that

TZ (L) ≃ τZ (L)

T ′Z (L) ≃ τ−1
Z (L)

This allows us to prove some remarkable algebraic facts almost immediately. Firsly, we have the

following:

Lemma 4.3: TF0
TF1

(Z) is the zero object.

Proof. Recall that by definition we have the exact triangles

HF•(F1,Z)⊗F1

Z

TF1
(Z) F1

HF•(F1,Z)∨ ⊗Z

T ′Z (F1)[1]

ev

[1]

ev′

[1]

However, HF•(F1,Z) = ⟨c⟩ is one-dimensional, where c is the intersection point. So the map

ev is just c and the tensor product does nothing, showing that (since cones are unique up to

isomorphism)

TF1
(Z) ≃ T ′Z (F1)[1] ≃ τ−1

Z (F1)[1] ≃ F0[1]

where in the last part we used 4.2. Now, we can apply the algebraic twist with F0 and get:

TF0
TF1

(Z) = TF0
(F0[1]) = TF0

(F0)[1]

However, this twist comes from the exact triangle

HF•(F0,F0)⊗F0

F0

TF0
(F0)

ev

But by 2.8 the self Floer cohomology of F0 ≃ Rn is just a copy of C and the evaluation map becomes

the identity. We can conclude the proof by the general fact about triangulated categories which

states that the cone of an isomorphism is zero.

We are now in a position to show that any Lagrangian satisfying our original conditions can be

achieved algebraically using only the Lagrangians F0 and F1, giving meaning to the phrase that

they generate the Fukaya category.
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Since L agrees with F0 almost everywhere, the closure of L \ F0 is a compact set which can be

shrinked to lie arbitrarily close to the zero section, where it looks like the graph of an exact 1-

form. In such a case, L is Lagrangian isotopic to τ2
Z (L). However, the grading on the latter will

have been changed by the Dehn twist, more precisely (this is shown in Seidel [20], Lemma 5.7)

τ2
Z (L) ∼ L[2− 2n]

Now we can exploit this fact together with the octahedral axiom applied to the following two

exact triangles:

HF•(Z,L)⊗Z

L

τZ (L) HF•(Z,τZ (L))⊗Z

τZ (L)

τ2
Z (L) ≃ L[2− 2n]

ev

[1]

ev′

[1]

The octahedral axiom allows us to "braid" these together as follows:

L

τZ (L)

HF•(Z,L)⊗Z L[1]

τZ (L)[1]

HF•(Z,L)⊗Z[1]τ2
Z (L) HF•(Z,τZ (L))⊗Z

C

[1]

[2− 2n] [1]

In other words, the cone in the middle is part of two distinguished triples, the two diagonal

braids (the black one and the dashed one). Hence, we have that L→ τ2
Z (L)→ C is a distinguished

triangle and moreover there are dashed arrows fitting C into the other distinguished triangle

C ≃ cone(HF•(Z,τZ (L))⊗Z[−1]→HF•(Z,L)⊗Z)

However, when n ≥ 2, the map L→ τ2
Z (L) ≃ L[2 − 2n] is going into negative degrees, so is an ele-

ment ofHF2−2n(L,L) = 0. By the fact that the cone of the zero map is a direct sum in a triangulated

category, we get

C ≃ L⊕L[2− 2n− 1]
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However, we can also simplify the other distinguished triangle as well. In particular

HF•(Z,τZ (L)) ≃HF•(τ−1
Z (Z),L) =HF•(Z[n− 1],L) ≃HF•+1−n(Z,L)

The first isomorphism follows since Floer cohomology is unchanged by applying the Dehn twist,

a symplectic isomorphism, to both Lagrangians, and moreover τZ (Z) ∼ Z[1 − n] since it doesn’t

change Z as a space but shifts the grading, by the same reasoning as before. The last isomorphism

follows from the fact that

HF•(L0[k],L1[l]) ≃HF•−k+l(L0,L1)

All of these facts are shown in Seidel, [20], page 12. We conclude:

Lemma 4.4: We have that

L⊕L[1− 2n] ≃ C ≃ cone(HF•(Z,L)[−n]⊗Z→HF•(Z,L)⊗Z)

Moreover, TF0
TF1

(L) is the zero object, just as we proved before for Z.

Proof. The first part is the calculation we just did. For the second part, notice that TF0
TF1

respects

sums and cones and hence sends the right hand side to 0, by 4.3.

Let us now calculate L entirely in terms of F0 and F1. We can do the same trick as before, using

the octahedral axiom, applied to the two exact triangles:

HF•(F1,L)⊗F1

L

TF1
(L) HF•(F0,TF1

(L))⊗F0

TF1
(L)

TF0
TF1

(L) = 0

ev

[1]

ev′

[1]

Braiding them gives us:

L

TF1
(L)

HF•(F1,L)⊗F1 L[1]

TF1
(L)[1]

HF•(F1,L)⊗F1[1]TF0
TF1

(L) = 0 HF•(F0,TF1
(L))⊗F0

S

[1]

0 [1]
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Now, we use the fact that the cone of the zero morphism is a direct sum:

S ≃ L[1]⊕ 0 = L[1]

On the other hand, this is precisely equal to the cone in the dashed diagonal, hence we have

shown the following:

Proposition 4.5:

L[1] ≃ cone(HF•(F0,TF1
(L))⊗F0[−1]→HF•(F1,L)⊗F1)

We are in the following situation: we have represented L as the cone of a map

x :HF•(F0,TF1
(L))[−1]⊗F0→HF•(F1,L)⊗F1

of degree 0, i.e. if we put V =HF•(F0,TF1
(L))[−1],W =HF•(F1,L), then x ∈Hom(V ,W )⊗HF•(F0,F1).

We computed HF•(F0,F1) ≃ H•(Sn−1,C) in 4.1, having a generator a of degree 0 and b of degree

n − 1. Hence, we can write x = α ⊗ a + β ⊗ b, where deg(α) = 0,deg(β) = 1 − n = d, giving us a

representation of the following quiver, called the graded Kronecker quiver:

V W

β

α

In fact, this representation must be indecomposable: if not, then we would be able to express L as

a direct sum, contradicting the fact that L is connected: HF0(L,L) ≃H•(L;C) ≃ C.

Now, applying hom(L,−) to L[1] = cone(V ⊗ F0
x−→W ⊗ F1) = cone(A→ B) we get that hom(L,L) =

HF•(L,L) is the cohomology of the complex End(cone) having the matrix form(hom(A,A) hom(B,A)

hom(A,B) hom(B,B)

 ,d =
[0 0

x 0

 ,−
])

In the differential d, we have assumed dA = dB = 0 by moving to a minimal model. Now, we

calculate using Lemma 4.1:

hom(A,A) = hom(V ⊗F0,V ⊗F0) = hom(V ,V )⊗HF•(F0) = hom(V ,V )

hom(B,A) = hom(W,V )⊗HF•(F1,F0) = 0

hom(A,B) = hom(V ,W )⊗HF•(F0,F1) = hom(V ,W )⊗H•(Sn−1;C)

hom(B,B) = hom(W,W )⊗HF•(F1) = hom(W,W )

Given an element

v 0

u w

 ∈ End(cone), where v ∈ hom(V ,V ),u ∈ hom(V ,W ) ⊗H•(Sn−1;C),w ∈

hom(W,W ) we see that

d

v 0

u w

 =

0 0

x 0


v 0

u w

±
v 0

u w


0 0

x 0

 =

 0 0

x ◦ v ±w ◦ x 0


43



But x ◦ v =

α ◦ vβ ◦ v

 ,w ◦ x =

w ◦αw ◦ β

, so we can describe this as the cohomology of the two-step

complex

0→ hom(V ,V )⊕hom(W,W )
(x◦◦x)
−−−−−→ hom(V ,W )⊗H•(Sn−1;C)→ 0

or better yet, since β has degree 1−n:

0→ hom(V ,V )⊕hom(W,W )


−α◦ ◦α

−β◦ ◦β


−−−−−−−−−−−−→ hom(V ,W )⊕hom(V ,W )[1−n]→ 0

To finish up, we need to quote a result from the representation theory of quivers, which classifies

all indecomposable representations of the graded Kronecker quiver, as found in Proposition 4 in

[22]. There are essentially three cases, which have the following consequences on the cohomology

of the two-step complex:

• OX(k), k ∈ Z, in which case the cohomology is one-dimensional and concentrated in degree

zero

• OX /J kX,0, k > 0 , in which case it is 2k-dimensional and has generators in degrees 0,−d, ..., (1−

k)d and d + 1,2d + 1, ..., kd + 1

• OX /J kX,∞, k > 0, in which case it is 2k-dimensional with generators in degrees 0,d, ..., (k −1)d

and 1− d,1− 2d, ...,1− kd

Corollary 4.6: L is isomorphic, up to a shift, to cone(F0 → F1) in D♭Fuk(T ∗Sn) Moreover,

H•(L) ≃H•(Sn;C), [L] = ±[Sn] and for any other L′ satisfying the same conditions, L∩L′ , ∅

Proof. Since d = 1 − n < 0, none of the representations above can give us the cohomology of an

n-dimensional manifold, except for the case k = 1 inOX /J kX,∞, which is given by dimV = dimW =

k = 1, and hence V ⊗ F0 = F0,W ⊗ F1 = F1, implying that L = cone(F0 → F1). For this representa-

tion OX /J 1
X,∞, the cohomology of the two-step complex has generators in degrees 0,n as already

mentioned, which shows that H•(L) ≃H•(Sn;C).

Now, F0,F1 and L fit into an exact triangle, giving a long exact sequence after applying hom(F1,−).

But by 4.1, we see that this implies HF•(F1,L) ≃ HF•(F1,F1) ≃ C, since HF•(F1,F0) = 0. A

property of Floer cohomology is that the Euler characteristic calculates the intersection num-

ber: χ(HF•(F1,L)) = F1 · L = ±1, which implies the second part. For the last part, if L′ satis-

fied the same conditions, then it would be isomorphic to L in the Fukaya category, and hence

HF•(L,L′) ≃ HF•(L,L) ≃ H•(L;C) ≃ H•(Sn;C) , 0 and hence they cannot be disjoint, as Floer co-

homology of disjoint Lagrangians is zero.
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5 Conclusion

In the course of this essay, we developed the basic theory of symplectic geometry and Floer coho-

mology (through an analogy with Morse theory) and described the basic principles of the Fukaya

category. Moreover, we showed how the Dehn twist, a symplectic automorphism, fits into an exact

triangle in the derived Fukaya category. Strikingly, through purely algebraic manipulation, this

allowed us to compute the Fukaya category of T ∗Sn,n > 1, which suggests that, Floer-theoretically,

every exact Lagrangian should behave exactly like the zero section.
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