
Cox Rings
More or less: the ring of sections of all effective line bundles.

cf. Cox, The Homogeneous Ring of a Toric Variety

Let X = TV (Σ), with Σ ⊂ N . Let uρ be the primitive generator of the the ray ρ,
corresponding to T-invariant divisor Dρ. Assume that Σ spans NR, that is, X has
no torus factors. Let Σ(1) (or σ(1)) be the set of 1-dimensional faces of a fan (or
cone).

Let ZΣ(1) = ⨁ρ Z ⋅ Dρ

Define the cox ring S = C[xρ : ρ ∈ Σ(1)]

A monomial ∏ρ x
aρ
ρ  determines the divisor D = ∑ aρDρ =: xD

Define the degree of a monomial deg(xD) = [D] ∈ An−1(X). Then two
monomials xa,xb are of the same degree iff there exists a m ∈ M such that
aρ = ⟨m,nρ⟩+ bρ for all ρ. Define the grading by

Sa = ⊕deg(xD)=aC ⋅ xD

so we can write S as

S = ⨁

a∈An−1(X)

Sa

and Sa ⋅ Sb ⊂ Sa+b, which is the homogeneous coordinate ring with respect to the
grading.

e.g.
X = Pn , S = C[x0, … ,xn]

X = P(a0, … , an) , S = C[x0, … ,xn] with each xi given weight ai
X = Pn × P

m, then S = C [x0, … ,xn; y0, … , ym]. Here, the grading is the usual



bigrading, where a polynomial has bidegree (a, b) if it is homogeneous of degree
a (resp. b ) in the xi (resp. yj).

Proposition: If α = [D] ∈ An−1(X), then there is an isomorphism

ϕD : Sα ≃ H 0 (X,OX(D))

where OX(D) is the coherent sheaf on X determined by the Weil divisor D (see
Fulton, §3.4). If α = [D] and β = [E], then there is a commutative diagram

where the top arrows is multiplication, the bottom arrow is tensor product, and
the vertical arrows are the isomorphisms ϕD ⊗ ϕE and ϕD+E.

This comes from the fact that H 0(X,OX(D)) = ⊕m∈PD∩MC ⋅ χm

For X a complete toric variety, Sa is finite-dimensional for all a, and S0 = C.
Moreover, if a = [D] for an effective divisor D, then dimCSa =∣ PD ∩ M ∣

WARNING: This ring developed so far depends only on the one-dimensional
cones of the fan, but not higher-dimensional cones.

Define the ideal BX of S (which depends on the whole fan) as follows: For each
cone σ ∈ Σ, Let σ̂ = ∑ρ∉σ(1) Dρ, and define xσ̂ = ∏ρ∉σ(1) xρ. Then

B := ⟨xσ̂ : σ ∈ Σ⟩

Note the B is in fact generated by the xσ̂ as σ ranges over the maximal cones of
Σ. Also, if Σ and Σ′ are fans in N  with Σ(1) = Σ

′
(1), then Σ = Σ′ if and only if the

corresponding ideals B,B′ ⊂ S satisfy B = B′. Because {xσ̂ : σ is a maximal

cone of Σ} = minimal basis of the monomial ideal B.

When X is a projective space or weighted projective space, the ideal B is
⟨x0, … ,xn⟩ ⊂ C [x0, … ,xn]. B ⊂ S plays the role for an arbitrary toric variety
that ⟨x0, … ,xn⟩ ⊂ C [x0, … ,xn] plays for projective space. In particular, we
have the variety

Sα ⊗ Sβ ⟶ Sα+β

↓ ↓

H 0 (X,OX(D)) ⊗ H 0 (X,OX(E)) ⟶ H 0 (X,OX(D + E))



Z = V(B) = {x ∈ C
Σ(1) : xσ̂ = 0 for all σ ∈ Σ} ⊂ C

Σ(1)

as the irrelevant subset of CΣ(1).

Lemma: Z ⊂ C
Σ(1) has codimension at least two.

Proof: Since B′ = ⟨xρ̂ : ρ ∈ Δ(1)⟩ ⊂ B, we have Z = V(B) ⊂ V (B′). But V (B′)

is the union of all codimension two coordinate subspaces, and the lemma
follows.

Now: how does this define a quotient?

Let X be toric variety arising from the fan Σ ⊂ N , with M = Hom(N ,Z). There is
an exact sequence

M → DivTN
(X) = ⨁

ρ

ZDρ → Cl(X) → 0

sending a character χm ↦ ∑ div(χm) ⟨uρ,m⟩Dρ and the second map sending a
divisor to its class in ClX). Moreover, the uρ's span NR, if and only if we have
the exact sequence $$
0\to M \to \mathrm{Div}{T{N}}(X)\to Cl(X) \to 0

Assumethat$X$hasnotorusfactors, i. e. thesecondexactsequenceholds.Thenapplying$

Let G := Hom(Cl(X),C∗) as in the above sequence. Then some properties of G
are:

Since (C∗)Σ(1) acts naturally on CΣ(1), the subgroup G ⊂ (C∗)Σ(1) acts on CΣ(1)

by

g ⋅ t = (g ([Dρ])tρ)

for g : An−1(X) → C
∗ in G and t = (tρ) in CΣ(1).

Cl(X) is the character group Ĝ of G
G ≃ (C∗)l × H, with H finite, which comes from the fact that Cl(X) is a
finitely generated abelian group of rank l = d − n, where d = |Σ(1)|



Using the action of G on CΔ(1), we can describe the toric variety X as the
quotient X = C

Σ(1) − Z//G.

Construction from weights:
Let's recall some basics of toric geometry. Let M = Hom(T n,C∗), and N = M ∨.
Recall that toric varieties are determined by their fan in NR, with an exact
sequence and its dual (assume no torus factors)

0 → L → Z
m → N → 0

and

0 → M → (Zm)∨
L

∨ → 0

The map Q describes an action of (C∗)n on the vector space Cm, given by a
n × m weight matrix, so we can form a GIT quotient with respect to this action.
The anticanonical divisor (here denoted detV ) is associated to the sum
detV = ∑qi∈Q

qi of the column of the weight matrix. Moreover, we call a Toric
GIT problem Calabi-Yau if detV = 0.

We can define semi stable loci by a choice of character χ in L∨ (which
corresponds to a (C∗)n -linearised line bundle Lχ on Cm).

X ss(Lχ) = {a ∈ C
m : ∃n > 0, f ∈ Γ(Lnχ) s.t. f(a) ≠ 0}

In practice, the semistable locus for a certain character X ss(Lχ) is calculated as
the complement of the vanishing locus of the irrelevent ideal.

For a stability condition χ in the secondary fan, define the irrelevant ideal Irrχ
as

Irrχ = (xi1
, … ,xir ∣ χ ∈ ⟨qi1

, … , qir⟩+)

That is, the ideal generated by monomials corresponding to cones containing χ.
Then Xus(Lχ) = V (Irr)

From this we get the quotient Cm//χT
n := (Cm − Xus(Lχ))/T n

ρ

Q
−→



The columns of the weight matrix generate rays of a fan in L∨ , which we call the
secondary fan. This gives a wall and chamber decomposition of characters. It
can be shown that two stability conditions chosen from the interior of the same
chamber will give the same quotient.

Example:
Consider the action of (C∗)2 = T 2 on V = C

4, with weight matrix

Q = ( )

and action (λ,μ)(x1,x2,x3,x4) = (λx1,λx2,μx3,
μ

λ2 x4)

Define detV  as the sum of the columns in the weight matrix, in this case (0, 2)T

The characters define GIT quotients:

Note that F2 is the minimal resolution of P(1, 1, 2), related by a blow up at its
singular point, but as orbifolds, they are related by a flop.

Wall crossings can give us other standard birational transformations

example:
Consider the action of C∗ on C3 with weights (1, 1, −1).
There are two quotients: X+ corresponding to the chamber with the weights
(1, 1), i.e. take the unstable locus to be x = y = 0, or X− corresponding to the
chamber with -1, i.e. take unstable locus z = 0. With these stability conditions we
have

X+ = O(−1)P1 X− = C
2,

where the wall crossing from the X− to X+ gives the blow up at a point.

Now suppose C∗ now acts on V = C
4 with coordinates x1,x2, y1, y2, and weight

matrix Q = ( ).
Defines two chambers in the secondary fan: χ+ > 0 and χ− < 0, so we get

1 1 0 −2

0 0 1 1

X1 = C
4//χ1T

2 = P(OP1 ⊕ OP1(2)) = F2

X2 = C
4//χ2

T 2 = P(1, 1, 2)

1 1 −1 −1



unstable locus x1 = x2 = 0 and y1 = y2 = 0. Hence

X+ ≃ O(−1)⊕2

P1 ≃ X−

This is an example of the Atiyah flop, related by a blow up and its flopping
contraction.

In the MMP, we say a variety is a minimal model if has nef canonical divisor. In
the GIT picture, we say a GIT quotient is minimal if − detV  lies in the closure of
the chamber corresponding to the variety -- The character defining the
semistable locus lies in the nef cone

Wall crossing Formula
Let V  be a vector space of dimension n, and let T  be an algebraic torus. Denote
detV = ∑i qi, where qi is the ith column of the weight matrix Q.

Consider a toric GIT problem defined by the action of a group T  on a vector
space V . Let C+ and C− be adjacent chambers of the secondary fan in L∗

R

separated by a wall W . Assume that detV  is on the C+ side of the adjoining wall
W . The wall W  corresponds to an orthogonal (primitive) one-parameter
subgroup λW ∈ L.
We can define a value κ = (detV )(λW ). Let λW  be such that κ ≥ 0, so is
pointing to the C+ 'side' of the wall. κ is a combinatorial value which will
(roughly) tell us which chamber admits the 'bigger' GIT quotients.

Let X+ (resp. X−) be the GIT quotient V //θ+
T  (resp. V //θ−

T  ) corresponding to
the chosen generic stability condition θ+ ∈ C+ (resp. θ−). Recall from the
previous section that GIT quotients are invariant across stability conditions in the
interior of a given chamber.

We can define a somewhat 'smaller' GIT problem associated to a subset
S ⊂ {1, … ,n}, or more specifically a subset QS of the weights corresponding to
the set S, which in our case are the si columns of the weight matrix for si ∈ S.
These weights generate a sublattice L∗

S ⊂ L∗
R

, determining what we call a Higgs



GIT problem, defined by the exact sequence

MS → Z
S L

∗
S

From this we will now form a strictly lower dimensional variety Z which give
components in a SOD of X+. First, we form a Higgs GIT problem, which defines
the GIT quotient of the fixed locus V λW  by T/λW . Here, our subset QS is the
collection of weights which are orthogonal to λW , that is, the weights which lie in
the space spanned by W . We can see that the lattice L∗

S is exactly the character
lattice for the action of T/λW , since the the weights span the space orthogonal
to λW . Moreover, the subspace of V  fixed by λW  corresponds to the lattice ZS in
the exact sequence. We choose a character θW  in the chamber of L∗

S

corresponding to the cone generated by W , to form the quotient

Z = V λW //θW (T/λW ).

Hence we get the theorem due to HL and BFK.

This theorem was proved in BFK in much greater generality than used here,
where such a decomposition holds for a smooth quasi-projective variety acted
upon by a linear algebraic group, and a wall-crossing between two G-equivariant
line bundles. However, to state the theorem in full generality requires more
technical machinery than is necessary for the toric case for the purposes of our
examples below.

QS

−→

Theorem 1.

Consider GIT quotients X+,X− related by a wall crossing across the wall W as
described above.
If κ > 0, we have a semi-orthogonal decomposition given by

D(X+) = ⟨D(X−),D(Z), … ,D(Z)⟩

with κ copies of D(Z) appearing.
If κ = 0, the wall crossing induces a flop, and we have an equivalence of categories

D(X+) ≃ D(X−).



For ease of notation, we will denote the factor of D(X) in a semi-orthogonal
decomposition just as X.

Beilinson's collection

Recall Beilinson's exceptional collection which forms a SOD of D(Pn). Since
P
n is a toric variety, we can realise it as the GIT quotient with respect to the

usual action of C∗ on V = C
n+1. So the weights are ( ), with

detV = n + 1. The wall crossing to X− = ∅, retrieves the decomposition
⟨pt, … , pt⟩ with n + 1 copies of the derived category of a point,
corresponding to the exceptional collection of line bundles on Pn.

1 1 … 1

Blow Up

Consider the action of C∗ on C3 with weights (1, 1, −1). There are two
stability conditions which can define toric GIT quotients, with X+

corresponding to the chamber with the weights (1, 1), i.e. take the unstable
locus to be x = y = 0, or X− corresponding to the chamber with -1, i.e. take
unstable locus z = 0. With these stability conditions we have

X+ = O(−1)P1 X− = C
2,

Hence we get the have the decomposition

D(O(−1)P1) = ⟨C
2, pt⟩

which recovers Orlov's blow-up formula, as X+ is the blow-up of C2 at a
point.


