Cox Rings
More or less: the ring of sections of all effective line bundles.

cf. Cox, The Homogeneous Ring of a Toric Variety

Let X =TV (X), with ¥ C N. Let u, be the primitive generator of the the ray p,
corresponding to T-invariant divisor D,. Assume that ¥ spans N, thatis, X has
no torus factors. Let ¥(1) (or o(1)) be the set of 1-dimensional faces of a fan (or
cone).

Letz*M =@ ,Z- D,

Define the cox ring § = Clz, : p € X(1)]

A monomial [],«," determines the divisor D = Y- a,D, =: z”

Define the degree of a monomial deg(z”) = [D] € A,,_1(X). Then two
monomials z¢, z° are of the same degree iff there exists a m € M such that
a, = (m,n,) + b, for all p. Define the grading by

S EB deg(a:D (C 33

so we can write S as

@ S,
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and S, - S, C S..p, Which is the homogeneous coordinate ring with respect to the
grading.

e.g.
X=Pn,8=C[l’0,...,l‘n]
X =P(ag,...,a,), S =Clx,...,z,] with each z; given weight q;

X=P" x P™, then S = C [z, ..., Zs;Yo,---,Ym]- Here, the grading is the usual



bigrading, where a polynomial has bidegree (a, b) if it is homogeneous of degree
a (resp. b ) in the z; (resp. y;).

Proposition: If o = [D] € A,_;(X), then there is an isomorphism
¢p:So ~ H° (X,0x(D))

where Ox (D) is the coherent sheaf on X determined by the Weil divisor D (see
Fulton, §3.4). If « = [D] and g = |E], then there is a commutative diagram

Sa ® Sﬂ — Sa+/3

\ \
H®(X,0x(D)) ® H (X,0x(E)) — H®(X,0x(D + E))

where the top arrows is multiplication, the bottom arrow is tensor product, and
the vertical arrows are the isomorphisms ¢p ® ¢ and ¢p. g.

This comes from the fact that H(X, Ox(D)) = ®mepynuC - x™

For X a complete toric variety, S, is finite-dimensional for all a, and S, = C.
Moreover, if a = [ D] for an effective divisor D, then dim¢S, =| Ppb N M |

WARNING: This ring developed so far depends only on the one-dimensional
cones of the fan, but not higher-dimensional cones.

Define the ideal Bx of S (which depends on the whole fan) as follows: For each
coneoc € X, Leté =3 . D, and define z° =] ., z,. Then

B::<ZE&IO'€E>

Note the B is in fact generated by the 27 as o ranges over the maximal cones of
. Also, if ¥ and X' are fans in N with (1) = £'(1), then ¥ = X' if and only if the

corresponding ideals B, B’ C S satisfy B = B'. Because {m& : o is a maximal

cone of ¥} = minimal basis of the monomial ideal B.

When X is a projective space or weighted projective space, the ideal B is
(xo,...,xn) C Clzo,...,zn]. B C S plays the role for an arbitrary toric variety
that (zg,...,z,) C Clz,,...,z,| plays for projective space. In particular, we
have the variety



Z=V(B) = {ZL‘ e C*M . g% = 0forallo e E} c ¢
as the irrelevant subset of C=().
Lemma: Z ¢ C=M has codimension at least two.
Proof: Since B’ = <:z;f3 1pE A(1)> C B,we have Z=V(B) C V(B'). But V(B')
is the union of all codimension two coordinate subspaces, and the lemma
follows.

Now: how does this define a quotient?

Let X be toric variety arising from the fan ¥ C N, with M = Hom(N,Z). There is
an exact sequence

M — Divy, (X) = @ zD, — C(X) — 0
p

sending a character x™ — > div(x™) (u,, m)D, and the second map sending a
divisor to its class in Ci1X). Moreover, the u,'s span Ng, if and only if we have

the exact sequence $$
O\to M \to \mathrm{Div}{{ T{N}}(X)\to CI(X) \to 0

(

Assumethat$ XS$hasnotorus factors,i. e. thesecondexactsequenceholds. Thenapplying

Let G := Hom(Cl(X),C*) as in the above sequence. Then some properties of G
are:

CI(X) is the character group G of G
G ~ (C*)! x H, with H finite, which comes from the fact that Ci(X) is a
finitely generated abelian group of rank [ = d — n, where d = |X(1)|

Since (C*)*W acts naturally on C=®, the subgroup G c (C*)*® acts on C=®)
by

g-t= (9([Dp])tp)

forg: A, 1(X) - C*inGandt=(t,) in CEV.



Using the action of G on C2®), we can describe the toric variety X as the
quotient X = C*0) — Z//G.

Construction from weights:

Let's recall some basics of toric geometry. Let M = Hom(T",C*), and N = M".
Recall that toric varieties are determined by their fan in Ny, with an exact
sequence and its dual (assume no torus factors)

0L—-Z" 5 N0

and
mVQ \Y
0—-M— (Z™)"—=L"—=0

The map @ describes an action of (C*)™ on the vector space C™, given by a

n X m weight matrix, so we can form a GIT quotient with respect to this action.
The anticanonical divisor (here denoted det V) is associated to the sum

detV = ZqZEQ q; of the column of the weight matrix. Moreover, we call a Toric
GIT problem Calabi-Yau if det V' = 0.

We can define semi stable loci by a choice of character x in LV (which
corresponds to a (C*)" -linearised line bundle L, on C™).

X*(Ly) ={acC™: dn>0,fecl(Ly) s.t. fla) # 0}

In practice, the semistable locus for a certain character X*°(L, ) is calculated as
the complement of the vanishing locus of the irrelevent ideal.

For a stability condition x in the secondary fan, define the irrelevant ideal Irr,
as

Irry = (@i @i, | X € {dins -5 i) +)

That is, the ideal generated by monomials corresponding to cones containing .
Then X*(L,) = V(Irr)

From this we get the quotient C™//, T™ := (C™ — X**(Ly))/T"



The columns of the weight matrix generate rays of a fan in .V , which we call the
secondary fan. This gives a wall and chamber decomposition of characters. It
can be shown that two stability conditions chosen from the interior of the same
chamber will give the same quotient.

Example:
Consider the action of (C*)? = T2 on V = C*, with weight matrix

o (10 -2
- \0 0 1 1
and action (A, u)(z1, z2, T3, Z4) = ()\ml,)\wz,,ua;g, %m)

Define det V' as the sum of the columns in the weight matrix, in this case (0,2)7
The characters define GIT quotients:

X1 =CY/,T*=P(Op & Om(2)) = Fs
X, =C4/),, T2 = B(1,1,2)

Note that I, is the minimal resolution of P(1, 1, 2), related by a blow up at its
singular point, but as orbifolds, they are related by a flop.

Wall crossings can give us other standard birational transformations

example:

Consider the action of C* on C3? with weights (1,1, —1).

There are two quotients: X, corresponding to the chamber with the weights
(1,1), i.e. take the unstable locus to be z = y = 0, or X_ corresponding to the
chamber with -1, i.e. take unstable locus z = 0. With these stability conditions we
have

where the wall crossing from the X _ to X, gives the blow up at a point.

Now suppose C* now acts on V = C* with coordinates z1, z2, y1, y2, and weight
matix@ =(1 1 -1 -1).
Defines two chambers in the secondary fan: x, > 0 and xy_ < 0, so we get



unstable locus ¢ = z9 = 0 and y; = yo = 0. Hence
X, ~O(-1)g ~ X_

This is an example of the Atiyah flop, related by a blow up and its flopping
contraction.

In the MMP, we say a variety is a minimal model if has nef canonical divisor. In
the GIT picture, we say a GIT quotient is minimal if — det V' lies in the closure of
the chamber corresponding to the variety -- The character defining the
semistable locus lies in the nef cone

Wall crossing Formula

Let V be a vector space of dimension n, and let T' be an algebraic torus. Denote
det V =Y. q;, where g; is the i*® column of the weight matrix Q.

Consider a toric GIT problem defined by the action of a group 7" on a vector
space V. Let C, and C_ be adjacent chambers of the secondary fan in Ly
separated by a wall W. Assume that det V is on the C', side of the adjoining wall
W. The wall W corresponds to an orthogonal (primitive) one-parameter
subgroup Ay € L.

We can define a value k = (det V))(Aw ). Let Ay be such that x > 0, so is
pointing to the C, 'side’ of the wall. x is a combinatorial value which will
(roughly) tell us which chamber admits the 'bigger' GIT quotients.

Let X, (resp. X_) be the GIT quotient V'///4 T (resp. V//¢y T ) corresponding to
the chosen generic stability condition 6, € C, (resp. 6_). Recall from the
previous section that GIT quotients are invariant across stability conditions in the
interior of a given chamber.

We can define a somewhat 'smaller' GIT problem associated to a subset

S c {1,...,n}, or more specifically a subset Qs of the weights corresponding to
the set S, which in our case are the s; columns of the weight matrix for s; € S.
These weights generate a sublattice Ly C Ly, determining what we call a Higgs



GIT problem, defined by the exact sequence
g @s
Mg — Z° — Ly

From this we will now form a strictly lower dimensional variety Z which give
components in a SOD of X, . First, we form a Higgs GIT problem, which defines
the GIT quotient of the fixed locus V" by T/ Aw. Here, our subset Qs is the
collection of weights which are orthogonal to Ay, that is, the weights which lie in
the space spanned by W. We can see that the lattice L is exactly the character
lattice for the action of T'/ Ay, since the the weights span the space orthogonal
to Aw. Moreover, the subspace of V fixed by Ay corresponds to the lattice Z* in
the exact sequence. We choose a character 0y in the chamber of L7
corresponding to the cone generated by W, to form the quotient

Z=V"//o (T/Aw).

Hence we get the theorem due to HL and BFK.

Consider GIT quotients X ., X _ related by a wall crossing across the wall W as
described above.

If kK > 0, we have a semi-orthogonal decomposition given by

with k copies of D(Z) appearing.

If kK = 0, the wall crossing induces a flop, and we have an equivalence of categories

D(X,)~ D(X_).

This theorem was proved in BFK in much greater generality than used here,
where such a decomposition holds for a smooth quasi-projective variety acted
upon by a linear algebraic group, and a wall-crossing between two G-equivariant
line bundles. However, to state the theorem in full generality requires more
technical machinery than is necessary for the toric case for the purposes of our
examples below.



For ease of notation, we will denote the factor of D(X) in a semi-orthogonal
decomposition just as X.

:= Beilinson's collection

Recall Beilinson's exceptional collection which forms a SOD of D(P"). Since
IP" is a toric variety, we can realise it as the GIT quotient with respect to the
usual action of C* on V = C"*1. So the weightsare (1 1 ... 1), with

det V = n + 1. The wall crossing to X_ = (), retrieves the decomposition
(pt,...,pt) with n + 1 copies of the derived category of a point,
corresponding to the exceptional collection of line bundles on P".

.= Blow Up

Consider the action of C* on C3 with weights (1,1, —1). There are two
stability conditions which can define toric GIT quotients, with X |
corresponding to the chamber with the weights (1, 1), i.e. take the unstable
locus to be z = y = 0, or X_ corresponding to the chamber with -1, i.e. take
unstable locus z = 0. With these stability conditions we have

X, =0(-1)p X_=C?
Hence we get the have the decomposition
D(O(—l)pl) = <C2,pt>

which recovers Orlov's blow-up formula, as X, is the blow-up of C? at a
point.



