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Overview

• Cubic fourfolds, their moduli space and the rationality problem

• Hodge theoretic vs derived categorical perspective

• Example: the class of cubics containing a plane

• Addington-Thomas: equivalence between the Hodge theoretic and

derived conjectures

• Sheridan-Smith and HMS for cubic fourfolds
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Rationality of cubic fourfolds

We know classically that cubic curves are not rational (they are elliptic

curves). However, cubic surfaces are always rational! Clemens and

Griffiths showed in 1972 that cubic threefolds are, in contrast, never

rational.

What about cubic fourfolds? There is some locus of cubic fourfolds

which are rational, but it is (conjecturally) neither open nor closed! Let’s

begin to understand their moduli space via the Torelli theorem of Voisin:

Theorem (Voisin): The period map

C → D

sending a cubic fourfold X to {H1,3(X ) ⊂ H4(X ,C)} is an open

immersion.
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Hodge theory cubic fourfolds



Hodge theory of the cubic fourfold

Let X ⊂ P5 be the zero locus of a degree 3 polynomial. We can compare

its Hodge diamond to that of a K3 surface:

Cubic fourfold

K3 surface

If we take the primitive cohomology of the cubic fourfold, we get

(0, 1, 20, 1, 0) which looks exactly like the middle cohomology of a K3

surface! 3



Cubic fourfolds and K3 surfaces

Cubic fourfold

K3 surface

However, the two have different signatures. To be able to compare them,

we have to pass to a codimension one subspace. For the K3, we can

always take the primitive cohomology.

For special cubic fourfolds we can find a class T ∈ H2,2(X ,Z) and move

to its orthogonal complement (a generic cubic has no such class!)
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Hasset’s theorem

Because of the Torelli theorem, finding the class of cubic fourfolds for

which such a surface exists and moreover has an associated K3 surface is

a lattice-theoretic problem:

Theorem (Hasset): The cubics containing an integral class T

as above form a family of irreducible divisors Cd , nonempty iff (*)

d > 6, d = 0, 2 (mod 6). Moreover, the cubics in Cd have an

associated K3 surface i.e. ∃S such that

H2
prim(S ;Z)(−1) ≃ ⟨h2,T ⟩⊥

precisely when (**) d is not divisible by four, nine, or any odd

prime p = −1(mod 3)
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Derived perspective



The derived perspective

Kuznetsov presented a different viewpoint on the cubic fourfold using

derived categories. The three line bundles OX ,OX (1),OX (2) form an

exceptional collection and he defined the component

AX = ⟨OX ,OX (1),OX (2)⟩⊥ ⊂ D(X )

Kuznetsov showed that AX is a Calabi-Yau 2 category and posed the

conjecture:

Conjecture (Kuznetsov): X is rational if and only if there is a

K3 surface S such that

D(S) ≃ AX
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Cubics containing a plane and

twisted K3 surfaces



Fundamental (non)-example: cubics containing a plane

The first nonempty item on Hasset’s list consists of the cubics containing

a plane. This is C8 (8 is coming from the intersection matrix

(
3 1

1 3

)
).

This class of cubics is perhaps the most important one: Voisin used it to

prove the Torelli theorem for cubic fourfolds, and Addington-Thomas

showed that C8 ∩ Cd ̸= ∅ for all other nonempty Cd and used deformation

theory out of C8 to deduce that Hasset’s and Kuznetsov’s conjectures are

in fact equivalent! Moreover, we can see how the associated K3 surface

appears geometrically.
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Cubics containing a plane

If P ⊂ X ⊂ P5 is a cubic fourfold containg a plane, then there is a

residual quadric fibration More on the geometry

BlPX = X̃ → P2 = {3-planes in P5 containing P}

The fibers are generically P1 × P1 degenerating to a cone over a sextic

curve in the base. Now, P1 × P1 has exactly two rulings, parametrized by

the connected components of the Fano variety of lines

F̃ (P1 × P1) = P1
∐

P1

A singular quadric is a cone, so has exactly one ruling:

F̃ (Q) = P1

If we define S to be the space of rulings on the fibers, we see that it is a

double cover of P2 branched along the sextic curve. Moreover, the

relative Fano variety parametrizing lines in the fibers is a P1 bundle over

this:

F̃
πS−→ S

π−→ P2
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Twisted K3 surfaces

In fact, this S is a K3 surface. There is an obstruction cocycle α to F̃

being a projectivization of a vector bundle, governed by the exact

sequence

1 → Gm → GL → PGL → 1

We can consider twisted vector bundles on S which only satisfy the

cocycle condition up to α, and they have a derived category D(S , α).

Theorem (Bernardara’s twisted projective bundle formula):

There is a semiorthogonal decomposition

D(F̃ ) = ⟨D(S , α),D(S)⟩
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Kuznetsov’s equivalence: mutation

Kuznetsov’s original proof is to compare two different SOD’s for X̃ : one

coming from its realization as a quadric fibration:

D(X̃ ) ≃ ⟨D(S , α),D(P2),D(P2)⊗O(H)⟩ ≃
≃ ⟨D(S , α),O(−h),O,O(h),O(H),O(h + H),O(2h + H)⟩

the other as a blowup:

D(X̃ ) ≃ ⟨D(X ),D(P2)⟩ ≃
≃ ⟨AX ,O,O(H),O(2H),OE ,OE (H),OE (2H)⟩

Via a sequence of mutations, one is transported into the other,

identifying the twisted category D(S , α) with the Kuznetsov component.
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Kuznetsov’s equivalence: FM kernel

Theorem (Kuznetsov): There is a derived equivalence

AX ≃ D(S , α)

One way to do this is via an FM kernel from the universal line

P̃ ⊂ X × F̃ with ideal sheaf I and its adjoint:

D(X ) D(F̃ )

AX D(S , α)

Φ

Ψ

≃

11



Relation to other cubic fourfolds

We have just seen that the cubic fourfolds with a plane behave like

twisted K3 surfaces. A natural question to ask is when are they actually

geometric, i.e. α = 1?

Theorem (Kuznetsov): The Brauer class vanishes precisely when

there is another surface class W satisfying deg(W )− P ·W being

odd. This is equivalent to X ∈ C8 ∩ Cd where Cd is one of the

divisors with associated K3 surfaces.
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Addington-Thomas’ argument

Addington-Thomas show that Hassett and Kuznetsov’s conditions are

equivalent.

First, Hassett’s arithmetic condition of special cubics is replaced by the

following:

X is special ⇐⇒ ∃κ1, κ2 ∈ Kalg (AX ) :

χ(κ1, κ1) = 0, χ(κ1, κ2) = 1, χ(κ2, κ2) = 2

Morally, κ1 = Op and κ2 = OS on the associated K3 surface.

We understand the case of X ∈ C8 ∩Cd , where there is an FM equivalence

Φ : AX ≃ D(S). Addington-Thomas then deform the kernel as follows:

• Consider the first-order deformations of X , S and Φ: these

controlled by the action of Φ on cohomology and in particular by the

Kodaira-Spencer classes κS , κX . By modifying the equivalence Φ

appropropriately, this can be shown to vanish.

• Extend the first-order deformations to all orders, by using T 1-lifting

methods. 13



Mirror symmetry for cubic

fourfolds



Sheridan-Smith: B-side

We consider the degenerating family of cubic fourfolds

Zb = {fb = 0} ⊂ P5
Λ

fb = −z1z2z3 − z4z5z6 +
∑
p∈∆

bpz
p

The p’s in the sum correspond to the set ∆ consisting of tuples

(p1, p2, p3, p4, p5, p6) ∈ Z6
⩾0 with

∑
pi = 3 and at most one of

(p1, p2, p3) being non-zero and the same for (p4, p5, p6). In fact,

|∆| = 24 and the monomial terms correspond to the components of the

boundary divisor D of the mirror K3 surface, under the monomial-divisor

mirror map.

When b = 0, we get the most singular cubic fourfold, the Perazzo primal.
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Sheridan-Smith: A-side

We take a K3 surface S which is the resolution of the quotient

(E × E )/Z3 where E = C/⟨1, e2πi/6⟩ is an elliptic curve. This has a

divisor D with 24 components and we consider the family of Kahler forms

ωλ =
∑
λpPD[Dp]. These classes span a 20-dimensional space in H2(S).

Thinking in the relative Fukaya category F(S ,D), sending λp → ∞
corresponds to removing a component Dp of the divisor. At the limit

where all λp → ∞, we get S \ D, the mirror to the Perazzo primal.
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Sheridan-Smith: HMS for the Kuznetsov component

Theorem (Sheridan-Smith): There is a quasiequivalence

F(S , ωλ) ≃ GrMF(fb(λ)) ≃ AZb

where val(bp) = λp.

The idea is to verify this at the central fiber, when we get the most

singular cubic fourfold, but the least complicated A∞ structure, and then

deform out, by using a versality argument.

In particular, combining this with the Addington-Thomas criterion, we

might expect that a cubic fourfold Z is rational if and only if the mirror

K3 surface admits an SYZ torus fibration with a Lagrangian section!
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HMS for the cubic fourfold

More generally, one can apply a variant of the AAK construction to the

cubic fourfold to extend this to the whole of D(Z ).

Figure 1: AAK construction
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HMS for the cubic fourfold

The mirror to our degenerating family of cubic hypersurfaces Zb is a toric

6-fold Y , equipped with a superpotential

W =
∑
i

ze
∗
i

︸ ︷︷ ︸
from P5

+ z
1
3

∑
e∗i︸ ︷︷ ︸

vanishes to order 1
along the boundary divisor

In more detail, we have chosen

• A lattice L = {v ∈ Z6|
∑

vi = 0( mod 3)}
• A simplex ∆ = {v ∈ Z6

⩾0|
∑

vi = 3}
• A function λ : ∆ → R⩾0 with λ−1(0) = {e1 + e2 + e3, e4 + e5 + e6}
and a convex extension ψλ. This gives us the family

Zλ = {
∑

bvz
v = 0}, bv = tλ(v) + h.o.t

• A fan Σλ given by the maximal domains of linearity of ψλ

corresponding to the mirror toric variety Yλ.
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HMS for the cubic fourfold

We can reduce Yλ to something simpler, namely

Yλ = Tot (L1 ⊕ L2) over a toric 4-fold Y λ

Y λ ↔ Σλ/(e1 + e2 + e3, e4 + e5 + e6)

D1 = L1 ⊕ {0} ↔ e1 + e2 + e3

D2 = {0} ⊕ L2 ↔ e4 + e5 + e6

The terms of the superpotential have the following orders of vanishing:

Terms of W Order along D1 Order along D2

ze
∗
1 , ze

∗
2 , ze

∗
3 1 0

ze
∗
4 , ze

∗
5 , ze

∗
6 0 1

z
1
3

∑
e∗i 1 1

So along D1 ∩ D2 = Y λ, locally we can identify Yλ with Y λ × C2
x,y and

W = xg1(z) + yg2(z)︸ ︷︷ ︸
W0

+ xyh(z)︸ ︷︷ ︸
W1
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HMS for the cubic fourfold

Now, the claim is that

FS0(W ) ≃ F(g−1
1 (0) ∩ g−1

2 (0)) ≃ F(S)

where S = {ze∗1 + ze
∗
2 + ze

∗
3 = 0} ∩ {ze∗4 + ze

∗
5 + ze

∗
6 = 0} ⊂ Y λ is the

K3 surface from Sheridan-Smith. Finally, when we add in the term W1,

this adds in three Morse singularities and

FS(W0 +W1) ≃ ⟨F(S), L1, L2, L3⟩ ≃ D(Z )
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Thank you for your attention!
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Cubics containing a plane:

geometry



Cubics containing a plane: geometry

Projecting orthogonally out of a plane P ⊂ P5 gives a rational map

PNP/P5 ≃ E BlPP5

P P5 P2

τ
ϕ

In coordinates, if P = V(z0, z1, z2), then the rational map is given by the

linear system |IP ⊗O(1)| which has basis z0, z1, z2 and base locus P. It

is resolved by blowing up, and the map ϕ is given by the linear system

IE ⊗ τ∗O(1).

Hence, we see that

IE ⊗ τ∗O(1) ≃ ϕ∗O(1)

If we denote by H the hyperplane class in P5 and by h the one on P2,

then this implies that

E ∼ H − h



Cubics containing a plane: geometry

We can think of the blowup in this simplified setting as the set

BlPP5 = {p ∈ P5, q ∈ P2| piqj = pjqi , 0 ⩽ i , j ⩽ 2} ⊂ P5 × P2

which comes equipped with two projection maps to P5 and P2 which are

the blowup and resolution maps, respectively. We can clearly see that

over P2, this is a projective bundle by looking at the affine cone over P5:

{a ∈ A6, q ∈ P2| aiqj = ajqi , 0 ⩽ i , j ⩽ 2} → P2

We can see that the coordinates a3, a4, a5 are unconstrained, so give us a

copy of the trivial bundle O⊕3. The other three coordinates give us

precisely the tautological bundle:

O(−1) = {(a0, a1, a2) ∈ A3, q ∈ P2| (a0, a1, a1) ∈ q}

Hence, we conclude that

BlPP5 = P(O(−1)⊕O⊕3) := P(F∨)



Cubics containing a plane: geometry

The strict transform has X̃ ∼ 3H − E ∼ 2H + h and is thus a quadric

fibration

X̃ → P2

which geometrically can be thought of as follows: the P2 parametrizes

3-planes containing P, and X intersects such a 3-plane in P union a

quadric.

We can see X̃ as the zero locus of q ∈ H0(P2,S2F ⊗O(1)) which can

also be thought of as a map F → F∗ ⊗O(1). The quadric fibers are

nonsingular outside the determinant locus, which is a sextic curve, since

det(q) = O(6). back
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