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0 Introduction

In this project, we review the theory of derived categories of coherent sheaves and apply it in three

different scenarios.

The derived category has its origins in the 60s, when Jean-Louis Verdier (a student of Grothendieck)

invented them and generalized the classical Serre duality to what is now called Grothendieck-Verdier

duality. This is a very powerful duality which provides the derived pushforward functor f∗ with

both a left adjoint f ∗ and a right adjoint f!.

Later on, in 1979, Beilinson produced what is called an exceptional collection for the derived

category of Pn, namely D(Pn) = ⟨O,O(1), . . . ,O(n)⟩. Informally, this says that every coherent sheaf

can be written as a generalized linear combination of some ‘point-like’ objects, by iteratively

using sums and cones. In some sense, the theory of derived categories of coherent sheaves is a

sophisticated version of linear algebra, which explains the title of Beilinson’s paper [Beil78]: one

can produce semiorthogonal decompositions (the ‘semi’ comes from the fact that the orthogonality

relations are no longer symmetric), which split the derived category into simpler pieces. We give

the proof of Beilinson in the foundational chapter, which boils down to resolving the diagonal,

and also generalize it to projective bundles and the blowup formula of Bondal-Orlov. All of these

can be thought of as a categorification of the usual projective bundle formula and blowup formula

in cohomology.

A few years later in 1981, Mukai proved the equivalence of the derived categories of an abelian

variety A and its dual Â, by using what is now-called a Fourier-Mukai transform. A classical example

of such a transform is the universal Poincare bundle on E ×Pic0(E), which parametrizes all degree

0 line bundles on an elliptic curve E. The analogy with Fourier transforms is that objects on the

product serve as a sort of kernel: given E ∈ D(X × Y ), one can take any F ∈ D(X), pull it up to

X × Y , multiply it with the kernel E and then push down, i.e. integrate. The result is denoted

ΦE (F ) ∈ D(Y ). Moreover, Grothendieck-Verdier duality allows one to find left and right adjoints of

this operation.

In the 90s came the the foundational papers by Bondal-Orlov [BonOrl95], [BonOrl97], who proved

all sorts of theorems about derived categories (too many to even mention). They proved, for

example, that every fully faithful functor between derived categories admitting an adjoint is

induced by a Fourier-Mukai kernel. Moreover, they showed that every Fano or anti-Fano variety

can be reconstructed from its derived category. This cemented the importance of derived categories

to algebraic geometry.

In 1994, a different viewpoint arose, connecting theoretical physics to derived categories. In his

ICM address [Kon94], Kontsevich proposed that mirror varieties coming from two models of

string theory (the A-model and B-model) have rich categorical structures, which are moreover

equivalent—on the A-side, there is what is called the Fukaya category, and on the B-side there is

the derived category of coherent sheaves. Kontsevich conjectured that D(X) ≃ DFuk(X̂) whenever
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X and X̂ are mirror to each other. This viewpoint created a fruitful dialogue between symplectic

and algebraic geometry, and it has served as a dictionary connecting physics and geometry ever

since.

The mirror symmetry conjecture gave a strong motivation to understand exactly when derived

equivalences of varieties arose. In particular, if birational equivalence was related to derived

equivalence. In 2000, Bridgeland [Bri00] proved that any two crepant resolutions of a terminal

threefold would be derived equivalent. This result was especially significant, as it showed that

birational Calabi Yau threefolds (which are related by a chain of flops) are derived equivalent. This

was one of the results which inspired Kawamata to formulate the DK hypothesis in [Kaw02], which

conjectures that for X and Y birationally equivalent smooth projective varieties, their derived

categories of coherent sheaves are equivalent if and only if there exists a smooth projective variety

Z with birational morphisms f : Z → X and g : Z → Y such that the pullbacks f ∗KX ∼ g∗KY are

linear equivalent. This hypothesis has led the establishment of formulas which can express a

derived category in terms of the variety’s birational geometry, in particular, a decomposition of a

derived cartegory which encodes the steps of the minimal model program.

The structure of this report is as follows:

• In Chapter 1, we review the foundational material: the basics of the construction of the

derived category, some computational tools like the Grothendieck spectral sequence. We

describe Serre and Grothendieck-Verdier duality and the definition of Fourier-Mukai trans-

forms, their adjoints and convolutions. After this, we review semiorthogonal decompositions

and prove Beilinson’s theorem, the projective bundle formula and the blow up formula. We

end with a quick section on spherical twists.

• After this foundational section, we review three different directions and applications of

derived categories. First, we investigate the behaviour of derived categories of coherent

sheaves when the underlying variety is subject to birational transformations such as flips,

flops and contractions, which are the common operations applied in the minimal model

program. In particular, examples of such transformations can be realised as the result of

wall crossings in a toric GIT problem, and we discuss the semi-orthogonal decompositions

of derived categories of toric varieties induced from these wall crossings, as proved by

Halpern-Leistner and Shipman [HLS16], and a homological interpretation of the minimal

model program due to [BDFKK13, KS22]. We also will see examples of the case of flops

which induce derived equivalences, which can be expressed as spherical twists from the

work of [DS14].

• The third section focuses on the cubic fourfold, an interesting and classical example to

which we can apply a contemporary spin via derived categories. We mention the intricate

connections between special cubic fourfolds and K3 surfaces, rationality conjectures and the

work of Kuznetsov [Kuz10], Hassett [Hass00] and Addington-Thomas [AdTh14].

• Finally, we end with a section on matrix factorizations and derived categories of singularities
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as introduced by Orlov [Orl04], applying derived categories in the context of singular

hypersurfaces. A classical result on matrix factorizations known as Knörrer periodicity can

be seen from a more geometric viewpoint in these contexts, as noted by Orlov and elaborated

on in many papers, e.g. [Orl06], [Ship12], [Hir17].

6



1 Foundations

When one first encounters homological algebra, for example in algebraic topology, a big emphasis

is put on the homology groups of a given space. However, it turns out that these groups are not

a complete invariant: there are spaces X,Y such that H•(X) ≃H•(Y ), but X is not homotopically

equivalent to Y .

To remedy this, one needs a refinement of structure: instead of only considering the homology

groups themselves, we can remember the whole singular chain complex C•(X). Then, a theorem

of Whitehead reassures us that two CW complexes with quasiisomorphic chain complexes are in

fact homotopy equivalent! By enhancing homology groups to a chain level structure, homotopy

equivalence becomes the same as quasiisomorphism of chain complexes. If we want to make

quasiisomorphisms into an equivalence relation, however, the right object of study is the derived

category.

In this section, we cover the basic construction of the derived category and in particular many

important properties of Db(X), the derived category of a variety X.

1.1 The derived category of an abelian category

Suppose we have an abelian category A: the main example we will be considering is the coherent

sheaves on a projective variety Coh(X). We would like to study Ch(A), which is also an abelian

category, but invert the class of quasiisomorphisms. The process of inverting is called localization

by a localizing class.

1.1.1 Localization

Suppose we have a class S of morphisms in an abelian category C that we would like to invert.

We have to be able to cancel them on the left and right for this construction to even make sense:

in other words, we should always be able to replace f : X → Y ,s : Z → Y by another morphism

s′ : T → X such that the following diagram commutes:

T
g

−−−−−−→ Z

s′
y ys
X −−−−−−→

f
Y

A class of morphisms is called a localizing class if it satisfies this property.
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Definition 1.1 (Localization): Suppose C has a localizing class S. Then C[S−1] is the category

with objects the same as that of C and morphisms given by equivalence classes of roofs which we

think of as s−1f . Two roofs are the same if there is a bigger roof restricting to them (one can think

of this as a larger numerator, or lcm)

Composition is defined by choosing some roof as follows:

F

D E

A B C

s′′ h

s f s′ g

f /s

g/s′◦f /s=g◦h/s′◦s′′

g/s′

Under these constructions, morphisms in S become invertible.

We run into the following problem: the quasiisomorphisms that we want to invert are not a

localizing class in Ch(A)! The way to get around this issue is to introduce the homotopy category,

where they do indeed localize:

Theorem 1.2 (Quasiisomorphisms localize in the homotopy category):

Quasiisomosphisms form a localizing class in the homotopy category of an abelian category

K(A)a. We denote the derived category by

D(A)B K(A)[Q−1]

aThis is the category where we mod out by chain homotopy equivalence, see e.g. [Weib]

Before embarking on the proof of this, let us recall the following construction from homological

algebra:

Definition 1.3 (Mapping cone): The mapping cone of f : A•→ B• is the complex A•[1]⊕B•

with differential

−dA 0

f dB

.

The three objects A•,B•,cone(f ) fit into a long exact sequence of cohomology groups. On the level

of the homotopy category, we would like to put the boundary map on the same footing as the other

ones, and form what is called a distinguished triangle:

B•

A• cone(f )

f

[−1]

The [−1] operator shifts a chain complex by 1. We see that f is a quasiisomorphism iff cone(f ) = 0.
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We will say that a triangle is distinguished if it is equivalent to one as above. We need to show

that these triangles are well-defined and can be rotated, essentially showing that the homotopy

category is a triangulated category.

Proposition 1.4: cone(B
τ−→ cone(f )) ≃ A in the homotopy category.

Proof. One needs to show that the two morphisms described below are homotopy inverses, which

can be done by finding explicit chain homotopies. For more details, consult [GelMan, §4]

From this proposition, we see that the following diagram commutes:

B −−−−−−→ cone(f ) −−−−−−→ A[−1]

=
y =

y y
B −−−−−−→ cone(f ) −−−−−−→ cone(τ)

Now we can complete the proof that quasiisomorphisms form a localizing class in the homotopy

category. The benefit of this is that we can replace A→ B→ cone(f ) with B→ cone(f )→ cone(τ)

and compose τ with another morphism.

Proof of Theorem 1.2. Recall that we wanted to show quasiisomorphisms form a localizing class,

so we’d like to be able to factorize in two ways: suppose f is a quasiisomorphism and g is any

morphism. We’d like to find ? such that ?→ C is a quasiisomorphism and the diagram commutes.

?
q.i.
−−−−−−→ Cy yg

A −−−−−−→
f

B

This comes down to the following diagram:

cone(τg)[−1]
q.i.
−−−−−−→ C −−−−−−→ cone(f ) −−−−−−→ cone(τg)y g

y =
y y

cone(τ)[−1] −−−−−−→ B
τ−−−−−−→ cone(f ) −−−−−−→ cone(τ)

q.i.
y =

y =
y y

A −−−−−−→
f

B −−−−−−→ cone(f ) −−−−−−→ A[1]

Since f is a quasiisomorphism, we see that cone(f ) = 0 and hence cone(τg) must be quasiisomor-

phic to C[1]. So we put ? = cone(τg)[−1].

1.1.2 The quotient viewpoint

It is natural to ask which objects in K(A) become zero in D(A). Such a complex must be acyclic,

since cohomology lifts to D(A), and then the map from the zero complex is a quasi-isomorphism
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so this suffices. In fact one can view D(A) as the quotient of K(A) by the subcategory of acyclic

complexes.

Definition 1.5: If C is a triangulated category, and D is a triangulated subcategory, then the

morphisms in C whose cones can be taken to be objects of D form a localizing class Σ. We then

define the quotient C/DB C[Σ−1].

Remark 1.6: In particular 0→ d becomes an isomorphism for any d ∈ D, since the cone is d,

and so D maps to zero in C/D. In fact C/D is the universal triangulated category with this

property.

1.1.3 Derived functors

When we have either enough projectives or injectives, then we can restrict to the full subcategory

of such objects (see [Huy, Proposition 2.40]):

Theorem 1.7: Assume A has enough projectives. Then

K−(P ) ≃D−(A).

Dually, if there are enough injectives,

K+(I ) ≃D+(A).

In fact, this shows that the injective complexes provide a dg-enhancement of the derived category.

Classically, to compute sheaf cohomology one replaces the sheaf by an injective resolution and then

takes homology. In the derived category, we don’t take homology but use the above equivalence to

remember the whole resolution. In fact, any two resolutions are quasiisomorphic, so this object is

well-defined.

Definition 1.8 (Right derived functor): Suppose that F :A→B is a left exact functor between

abelian categories, e.g. the pushforward functor. Then we can define RF, the right derived functor

of F, by choosing an inverse to the equivalence on the left:

D+(A) −−−−−−→ D+(B)x x
K+(IA)

F−−−−−−→ K+(B)

Explicitly, we choose an injective resolution A• → I• and define RF(A•) B F(I•). The n-th

homology of this complex is defined to be RnF(A•).

Dually, one can also define left derived functors for right exact functors by taking projective

resolutions.
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1.1.3.1 Derived functors in geometry

Now we specialize to Db(X) =Db(Coh(X)). There are a plethora of geometric functors:

• Γ : QCoh(X)→ Ab

• Hom : QCoh(X)×QCoh(X)→ Ab

• Given f : X → Y , have f∗ : QCoh(X)→ QCoh(Y ). For Y = pt = SpecC, pushforward is the

same as taking global sections of the sheaf.

• Hom : QCoh(X)×QCoh(X)→QCoh(X). Notice Γ ◦Hom = Hom. These are left exact.

• ⊗, f ∗. These are right exact. Note that f −1 is exact, but to get f ∗ one tensors with the structure

sheaf.

QCoh(X) has enough injectives, but not a lot of projectives. So we can define right derived functors.

We would like to say that, since g∗ ◦ f∗ = (g ◦ f )∗ then the same holds for their derived versions.

We run into the following issue: the pushforward does not respect injectives! We will introduce

another class of sheaves, the flasque ones, to make this work. Now, pushforwards respect flasque

sheaves! This is an example of what is called an adapted class:

Definition 1.9 (Acyclic objects and adapted classes): An object is called F-acyclic ifRiF(A) =

0 for i > 0. A class of objects is adapted to F if it is closed under ⊕, all objects in the class are

F-acyclic and every object in A can be embedded in an object of the class.

Notice that one can throw in all F-acyclic objects in the adapted class, but that would cause a

problem if we want the inclusion in the following theorem to hold.

Theorem 1.10 (Composition of derived functors): Suppose F :A→ B, G : B → C are two

functors such that F(RA) ⊂ RB , where these are adapted classes for F and G respectively. Then

RG ◦RF = R(G ◦F).

Since pushforwards send flasques to flasques, and flasques are an adapted class, we get what we

originally wanted, i.e.

Rg∗ ◦Rf∗ = R(g ◦ f )∗

Remark 1.11: Dually, one can define adapted classes for left-derived functors. The last

condition is then that every object admits a surjection from an object of the class.

1.1.4 Morphisms in the derived category and derived Hom

The morphisms between two chain complexes in Ch(A) tend to be quite big: in fact, there is an

enhanced Hom-chain complex:
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Hom(A•,−) : Ch(A)→ Ch(Ab)

Homn(A•,B•) =
∏

Hom(Ai ,Bi+n)

with differential df = dBf − (−1)nf dA. We see that Z0 is just chain maps, whereas B0 is chain

homotopies, so H0 is HomK(A)(A,B), i.e. morphisms up to homotopy. More generally,

Z i Hom•(A•,B•) = HomCh(A)(A
•,B•[i])

Bi Hom•(A•,B•) = morphisms homotopic to zero

H i Hom•(A•,B•) = HomK(A)(A
•,B•[i])

Remark 1.12: This chain complex structure on Hom’s makes Ch(A) into a differential graded

category, or dg-category, giving a dg-enhancement of K(A).

If we want to compute RHom(A•,B•), we replace B by a complex of injectives I• (which can always

be done by a method called the Cartan-Eilenberg resolution) and then compute Hom•(A,I).

Proposition 1.13 (Morphisms in the derived category):

Exti(A•,B•) :=H i(RHom•(A•,B•)) ≃HomD(A)(A
•,B•[i])

Proof. Essentially, have the sequence of isomorphisms

HomD(A)(A
•, I•[i]) ≃HomK(A)(A

•, I•[i]) ≃H i Hom•(A•, I•) ≃ Exti(A•,B•)

We demonstrate this explicitly for A• a single object concentrated in degree zero. Take an injective

resolution B•→ I•. We see that

HomD(A)(A,B
•[i]) ≃HomK(A)(A,I

•[i]).

But this is given by a morphism f : A→ I i which should be a chain map:

0 −−−−−−→ A −−−−−−→ 0y f

y y
I i−1 −−−−−−→ I i −−−−−−→ I i+1

Hence, we can think of f as a map in Homi(A,I•) which is closed. Moreover, it is exact precisely

when it factors through I i−1 which is the same as saying it is nullhomotopic. This shows that

indeed Exti(A,B) ≃HomD(A)(A,B[i]).

Now we focus on a geometric example. Take E a quasicoherent sheaf. Then local Homs form a left

exact functor Hom(E,−) and we can form its right derived functor

RHom(E,−) :D+(QCoh(X))→D+(QCoh(X))
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Crucially, projective varieties have enough vector bundles to resolve any sheaf:

Proposition 1.14: If X is projective, then Coh(X) has enough locally frees.

The reason is that given F, there is n≫ 0 such that F(n) is generated by global sections. These

are given by maps OX → F(n), and since F is finite type we get a surjection ONX → F(n). Can then

untwist. In this case, every bounded above complex of coherent sheaves is quasiisomorphic to a

bounded above complex of vector bundles. If X is regular, can just take bounded. Need Hilbert

syzygy theorem.

This means we have an adapted class of locally frees, allowing us to similarly define RHom(−,F).

Now, Hom(E,−) takes injectives to flasques. From this, using 1.10 we see that

RHom(E,−) = RΓ(RHom(E,−))

1.1.5 Compatibilities between derived functors

Recall: to derive Hom(F ,−) we can resolve the second term by injectives, whereas to derive

Hom(−,G) we can resolve the first term by vector bundles. Similarly for complexes of sheaves. For

the derived tensor product F • ⊗L G• we have the same story, except need only use locally frees

on either side. There are nice properties which can be checked on locally frees, and then taking

complexes of locally frees e.g. associativity:

(E• ⊗L F•)⊗L G• ≃ E• ⊗L (F• ⊗L G)

Now consider the left derived functor Lf ∗ :D−(CohY )→D−(QCohX). Since we have an adapted

class of locally frees and pullbacks of vector bundles are vector bundles, we see that

Lg∗ ◦Lf ∗ ≃ L(g ◦ f )∗

We have all sorts of other compatibilities:

Lf ∗(E• ⊗L F •) ≃ Lf ∗E• ⊗L Lf ∗F •

RHom(E•,RHom(F •,G•)) ≃ RHom(E• ⊗L F ,G•)

RHom(E•,F •)⊗L G• ≃ RHom(E•,F ⊗L G•)

E∨ ⊗L G• ≃ RHom(E•,G•), E∨ ≃ RHom(E ,OX )

Also have an adjunction projection formula as usual:

Rf∗RHomX(Lf ∗E ,F ) ≃ RHomY (E ,Rf∗F )

RHomX(Lf ∗E ,F ) ≃ RHomY (E ,Rf∗F )

Works if E is injective, F locally free. The second version comes from the first one by taking global

sections. Note that Γ (f∗G) = Γ (G) and the same holds upon applying derived functors.
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The adjunction formula is a version of the projection formula.

Rf∗(E ⊗L Lf ∗F ) ≃ (Rf∗E)⊗L F

The projection formula, as well as the other ones, usually requires that F be locally free, but in the

derived setting it works for everything, since we resolve by locally frees!

We finish off by citing the following incredibly useful fact:

Theorem 1.15 (Cohomology and base change): Suppose we have a flat morphism g : Y → Z

and a pullback square

W
f̃

−−−−−−→ Y

g̃

y yg
X −−−−−−→

f
Z

Then

Lg∗ ◦Rf∗ = Rf̃∗ ◦ L̃g∗.

Example 1.16: When Z = SpecC, W = X ×Y then we must have that

Rp∗q
∗E ≃ g∗Rf∗E

where both f and g map to a point. But Rf∗ = RΓ in this case. The derived category of

SpecC is the category of graded vector spaces, where every object can be replaced by its

cohomology with zero differential. Hence, the thing on the right is just

OY ⊗C RΓ(E)

where RΓ(E) is a graded vector space.

We can apply this to a classical example, the Poincare bundle on the elliptic curve:

Example 1.17 (Poincare bundle): When X is an elliptic curve, then if E = OX concentrated in

degree zero, we have

RΓ(OX ) =H•(X,OX ) = C 0−→ C

Then g∗Rf∗E = OY
0−→OY = OY ⊕OY [1].

Now, let E be an elliptic curve and fix P0 ∈ E. Then every degree zero line bundle is given

by OE(P − P0). Hence

Pic0(E) ≃ E.

Can make universal bundle over L→ Pic0(E)×E given by LB OE×E(∆−E×P0). We see that

L|P×E ≃ OE(P − P0).
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Now, note that

H•(E,OE(P − P0)) =


0, P , P0

C⊕C[1] P = P0

which is the skyscraper sheaf computation we did before. Have the following diagram, to

which we want to apply cohomology and base change:

P ×E −−−−−−→ E ×Ey yπ
P −−−−−−→ E

We have just seen, since pushforward to a point is global sections, that

Rπ∗ι
∗L =H•(E,OE(P − P0))

From the cohomology and base change formula, this must be equal to Lι∗Rπ∗L. We appeal

to the fact that Rπ∗L = OP0
[−1]. Moreover, the ideal sheaf sequence is in particular a Koszul

resolution:

0→OE(−P0)→OE →OP0
→ 0

This is a resolution of locally free sheaves allowing us to compute the derived restriction

pullback of OP0
which is exactly C 0−→ C if P = P0 and 0 if not equal, as expected.

Remark 1.18 (Fourier-Mukai transforms): What we have just seen is an example of a Fourier-

Mukai kernel: the universal line bundle L on E × E, which defines an endomorphism

ΦL :Db(E)→Db(E), F 7→ Rp∗(q∗F ⊗L L). In fact, its adjoint is given by the Fourier-Mukai

transform with kernel L∨[1], as we will see later in the section on Fourier-Mukai transforms.

Now, we know that Rπ∗L = ΦLO. Hence, by adjointness we see that

Hom(Rπ∗L,OP [−1]) ≃Hom(O,ΦL∨OP ) ≃H•(E,O(P − P0))

This allows us to conclude that Rπ∗L ≃ OP0
[−1] as was mentioned before.

From now on we will drop the R’s and L’s unless needed for clarity.

1.1.6 Computing derived functors: the Grothendieck spectral sequence

Suppose we know the approximations RiF(Ap) or RiF(HpA) for a complex A•. How can we

compute RiF(A) from this information?

We first need the Cartan-Eilenberg complex I•,•, which is a special bicomplex resolution of A•.

One can check that Tot I → A is a quasi-isomorphism. So RF(A) = F(Tot I) = TotFI . When we take

cohomology, we are interested in the n-th cohomology of the total complex, for which we have two

spectral sequences associated to the bicomplex: one starts with horizontal differential, and the
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other with the vertical.

If we start with vertical, then the first page is

E
p,q
1 = RqF(Ap)⇒ RnF(A)

If we start with horizontal, then

E
p,q
2 = RqF(HpA)⇒ RnF(A)

More generally, there is a computational tool called the Grothendieck spectral sequence which

computes the derived functors of a composition:

E
pq
2 = RpG ◦RqF =⇒ Rp+q(G ◦F)

Now we describe two very important instance of the Grothendieck spectral sequence, the Leray

spectral sequence and the local to global spectral sequence.

Example 1.19 (Leray spectral sequence): Consider a composition X
g
−→ Y

f
−→ Z. The Leray

spectral sequence is as follows:

Rn(f ◦ g)∗F =Hn(R(f ◦ g)∗F ) =Hn(Rf∗Rg∗F ) = Rnf∗(Rg∗F )

We are in the situation of trying to compute the n-th derived functor of F = f∗ of some

complex A = Rg∗F . We can apply the second spectral sequence to see that

E
p,q
2 = Rqf∗(R

pg∗F )⇒ Rn(f ◦ g)∗F

When we apply this to Z = SpecC, then f∗ is global sections and Rf∗ is sheaf cohomology, as

is R(f ◦ g)∗ which gives us the Leray spectral sequence:

Hq(Y ,Rpg∗F )⇒Hp+q(X,F )

Example 1.20 (Local to global spectral sequence): We know from before that

RΓ◦RHom = RHom

Upon taking cohomology, on the right hand side we get Extn(F ,G). On the other hand,

taking F = Γ , A = RHom(F ,G) then the spectral sequence gives us

Hq(X,Extp(F ,G))⇒ Extn(F ,G)

As an application, we compute the Ext groups of a point, as well as the self local Exts of a subvariety.

More precisely, let Y ⊂ X be a subvariety given by the zero locus of a section of E, which we can

Koszul resolve:

· · · → ∧2E∨→E∨→OX →OY → 0
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i.e. we replace OY by
∧•E∨. Then Ext•(OY ,OY ) is computed by applying Hom(−,OY ) to the

complex and taking cohomology. But once we restrict to Y , the maps become zero since they are

given by the defining section s for Y . Hence, the complex is formal and we get

Exti(OY ,OY ) =Hom(
∧i
E∨,OY ) =

∧i
E ⊗OY =

∧i
E|Y =

∧i
NY /X

This allows us to compute the self Ext groups of a point, by using the local-to-global spectral

sequence:

H i(X,Extj (Op,Op))⇒ Exti+j (Op,Op)

The local homs will be supported at p. So it has no higher cohomology i.e. the cases i > 0 give

nothing. But when i = 0, we have no differential. So in fact

Ext•(Op,Op) ≃H0(X,Ext•(Op,Op))

From the Koszul resolution, we see that the latter is just an exterior algebra!

Remark 1.21 (Mirror symmetry): In mirror symmetry, varieties come in pairs such that the

Floer cohomology groups on one side correspond to Ext groups on the other. If we think of

X as the moduli space of its skyscraper sheaves, then since Ext groups should match up with

self Floer groups, the mirrors to points should be Lagrangians with self Floer cohomology

equal to an exterior algebra. But self Floer cohomology is equal to usual cohomology for

unobstructed Lagrangians, which motivates the fact that mirror to points we should have

(special) Lagrangian tori. This is the basis of the SYZ philosophy.

Remark 1.22 (Deformations): We see that the global sections of the normal bundle of Y ,

which describe its deformations inside X, can be described by Ext1(OY ,OY ).

We mention briefly the Hochschild (co)homology

HH•(X) := Ext•(O∆X ,O∆X ),HH•(X) := Extn−•(∆∗ω
−1
X ,O∆)

in the form of the following important theorem due to [Kon97], which boils down to the local-to-

global spectral sequence degenerating:

Theorem 1.23 (Hochschild-Kostant-Rosenberg):

HHk(X) =
⊕
p+q=k

Hq(X,ΛpTX ), HHk(X) =
⊕
q−p=k

Hq(X,Ωp
X ) =

⊕
q−p=k

Hp,q(X)

Note that Hochschild cohomology is not functorial, but Hochschild homology is (though both are

under fully faithful functors).
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Remark 1.24 (More on deformations): The second Hochschild cohomology group

parametrizes the deformations of the derived category Db(X) and by the HKR theorem we

have that

HH2(X) =H2(X,OX )⊕H1(X,TX )⊕H0(X,
∧2

TX )

The first piece can be thought of deforming the sheaves on X: if we take α ∈H2(X,OX ), its

exponential exp(α) ∈H2(X,O∗X ) is a Brauer class, i.e. a cocycle that allows for the definition

of twisted vector bundles (see 1.4.3 for more on this).

The second piece determines the deformations of X as a variety, whereas the final, more

mysterious piece, determines the non-commutative deformations.

1.2 Serre duality

Serre duality is a classical fact about projective varieties that can be lifted to a structure on the

derived category. We explain how.

Proposition 1.25 (Classical Serre duality): If X is smooth projective over C, and E is a vector

bundle on X, then

H i(X,E)∗ ≃Hn−i(X,E∨ ⊗ωX )

The duality is given by a pairing. Namely, we have a perfect pairing

H i(X,E)⊗Hn−i(X,E∨ ⊗ωX )→Hn(X,E ⊗E∨ ⊗ωX )
tr−→Hn(X,ωX )

≃−→ C

An alternative way to prove this is via the Hodge star operator on vector bundles.

There is also a hypercohomology version. If we replace E by a complex of vector bundles, we

define the dual complex as

Hom(E•,OX )n =Hom(E−n,OX )

Similarly, there is a trace map E∨ ⊗E →OX , so in the same way we can construct a pairing.

Proposition 1.26 (Serre duality for complexes): Define the hypercohomology of a complex as

Hi(X,E)BHi RΓ(E). Then

Hi(X,E)⊗Hn−i(X,E∨ ⊗ωX )→ C

This pairing is still perfect.

One can use the LES on hypercohomology via truncating complexes and reduce this to the case of

vector bundles (this method of proof is called devissage).

Finally, we come to the categorical version:

18



Proposition 1.27 (Categorical form of Serre duality): If A,B ∈Db(X), and n = dimX, then

Hom(A,B)∨ ≃Hom(B,A⊗ωX [n])

The idea is as follows: we can compute the Homs of the derived category as

HomDb(X)(B,A⊗ωX [n]) ≃HnRHom(B,A⊗ωX )

≃HnRΓ(RHom(B,A⊗ωX ))

≃Hn(X,B∨ ⊗L A⊗ωX ).

Similarly,

HomDb(X)(A,B) ≃H0 RHom(A,B)

≃H0 RΓ(X,RHom(A,B))

≃H0(X,A∨ ⊗L B).

These are dual by the previous version of Serre duality, applying it to E = A∨ ⊗L B.

Definition 1.28 (Serre functor): Define S :Db(X)→Db(X), F 7→ F ⊗ωX [dimX]. Then

Hom(A,B)∗ ≃Hom(B,S(A))

A Serre functor is an additive, C-linear autoequivalence obeying the above property.

Two such functors are canonically equivalent, since S(A) represents the functor B 7→Hom(A,B)∗.

The Serre functor allows us to switch between left and right adjoints. Suppose F left adjoint to G.

Then SFS−1 is right adjoint to G.

Definition 1.29 (Calabi-Yau category): A category is called a Calabi-Yau n category if it has a

Serre functor given by just shifting by n, S = [n].

Example 1.30 (Shriek functor and Grothendieck-Verdier duality): Given f : X → Y , we have

that Lf ∗ is left adjoint to Rf∗. In both categories there are Serre functors, so can obtain the

right adjoint to the pushforward as

f !(A)B (Lf ∗A⊗ f ∗ω−1
Y [−dimY ])⊗ωX [dimX]

= Lf ∗A⊗ (f ∗ω−1
Y ⊗ωX )[dimX −dimY ]

We call ωf B f ∗ω−1
Y ⊗ωX = f !OY , the relative dualizing sheaf. The adjunction reads

Hom(Rf∗A,B) ≃Hom(A,f !B)

In fact, there is a sheafified version:

RHom(Rf∗A,B) = Rf∗RHom(A,f !B)
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In particular, with B = OY get

(Rf∗F )∨ ≃ Rf∗(F ∨ ⊗ωf [dimX −dimY ])

Putting Y = pt, we recover usual Serre duality! So this can be seen as a relative version of

Serre duality. But in general, cannot take the pieces Ri as dual! Have to keep the whole

chain complex.

1.3 Fourier-Mukai transforms

1.3.1 Definition and Orlov’s theorem

We come to the subject of Fourier-Mukai transforms. A kernel in analysis is a function against

which we integrate, and in a similar way a kernel in algebraic geometry is an object on the product

which we tensor with and then we pushforward:

Definition 1.31 (Fourier-Mukai functor): Given E ∈Db(X ×Y ), its associated Fourier-Mukai

functor is

ΦE :Db(X)→Db(Y )

F 7→ Rp∗(E ⊗Lq∗F )

where q : X ×Y → X, p : X ×Y → Y are the projections.

We will sometimes write G⊠F := p∗G ⊗ q∗F for the sheaf on the product coming from G on X and

F on Y .

Remark 1.32: Since X × Y ≃ Y ×X, an object E ∈ Db(X × Y ) defines two FM transforms;

mapping Db(X)→ Db(Y ) and Db(Y )→ Db(X). We write ΦX→Y
E and ΦY→X

E to distinguish

these if it is not clear from context.

All of the functors we have so far encountered are FM transforms:

• Given f : X → Y with Γf ⊂ X × Y , the structure sheaf of the graph is the kernel of the

pushforward functor and the pullback functor, depending on the way we go.

Have OΓ = (1× f )∗OX and we use the projection formula:

p∗(OΓ ⊗ q∗F ) = p∗(1× f )∗(OX ⊗ (1× f )∗q∗F ) = f∗F

• Tensoring with G is the Fourier-Mukai transform with respect to ∆∗G where ∆ : X→ X ×X is

the diagonal embedding. In particular the identity is induced by O∆.

• Shift functor is induced by O∆[n].
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• If Y is a fine moduli space of sheaves on X equipped with a universal sheaf E → X × Y

parametrizing sheaves by restricting to X × {y}. We see that the Fourier-Mukai transform

w.r.t. the universal sheaf of a skyscraper sheaf Oy is E|X×{y}, the sheaf that the point y ∈ Y

parametrizes. Have induced map

TyY = Ext1(Oy ,Oy)→ Ext1(E|X×{y},E|X×{y})

This is the so-called Kodaira-Spencer map! Deformations of the point give first-order

deformations of the sheaf.

Given kernels E, E ′ on X×Y and Y ×Z respectively, we consider the kernel E ′′ = π13∗(π∗12E⊗π23∗E ′)

on X ×Z by pulling to the triple product and then pushing down. We claim that

Proposition 1.33 (Composition of kernels):

ΦE ′ ◦ΦE = ΦE ′′

Proof. This is done by using the projection formula a bunch of times and finally an instance of flat

base change. Basically, one first transforms everything to a tensor product on the triple product

X × Y × Z by using the projection formula. Then, one one can use different ways to factorize

the projection to Z, together with the projection formula and base change for the diamond

involving X × Y × Z, X × Y , Y × Z, Y . For the complete proof and diagram, consult [§5 Huy,

Proposition 5.10].

Proposition 1.34 (Adjoints of FM transform): The adjoints of a Fourier-Mukai functor are

given by the dual kernel together with a Serre functor: given ΦE going from X to Y , have two

adjoints given by ΦE∨⊗q∗ωX [dimX] and ΦE∨⊗p∗ωY [dimY ].

Proof. For this, we crucially need Grothendieck-Verdier duality!

HomY (ΦE (F ),G) = HomY (p∗(E ⊗ q∗F ),G) ≃HomX×Y (E ⊗ q∗F ,p!G)

≃HomX×Y (E ⊗ q∗F ,p∗G ⊗ωp) ≃HomX×Y (E ⊗ q∗F ,p∗G ⊗ q∗ωX [dimX])

≃HomX×Y (q∗F ,E∨ ⊗ p∗G ⊗ q∗ωX [dimX]) ≃HomX(F ,ΦE∨⊗q∗ωX [dimX](G))

So if the kernel induces an equivalence, the dimensions of the two varieties should be the same.

Theorem 1.35 (Orlov): Every fully faithful exact functor between is induced by a Fourier-

Mukai transform. In particular every equivalence as well. Moreover the kernel is unique up to

isomorphism.
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The proof can be found in [Orl09]. We also cite the following useful criterion, due to Bondal-Orlov

[BonOrl95]:

Proposition 1.36 (Generation criterion): A Fourier-Mukai transform with kernel E is fully

faithful if and only if

Hom(ΦEOx,ΦEOy[i]) =

C, if x = y, i = 0

0, if x , y or i < 0 or i > dim(X)

The proof is slightly technical and can be found in [§7 Huy, Proposition 7.1]. The point is that

skyscraper sheaves are a spanning class.

1.4 Exceptional objects, admissible subcategories and semiorthogonal decom-

positions

1.4.1 Exceptional collections and Beilinson’s theorem

Definition 1.37 (Exceptional object): An exceptional object is one with the cohomology of a

point:

Exti(E ,E) = HomDb(X)(E ,E[i]) =

C if i = 0,

0 otherwise.

Given a morphism X→ Y , we say E is relatively exceptional w.r.t. Y if

Rf∗Hom(E ,E) = OY

This reduces to the previous definition in the case that Y is a point.

For example, line bundles on Pn and more generally on Fanos by Kodaira vanishing. Also, OE(t)

on a blowup at a point with exceptional divisor E. This is done by applying LES to the ideal sheaf

sequence

0→OX̃(−E)→OX̃ →OE → 0

Then after homming into OE we get

Ext•(O(−E),OE) =H•
X̃

(OE(E)) ≃H•E(OE(−1)) = 0

since E = Pn−1. Moreover, since p∗OX = OX̃ , by adjunction we get

Ext•(OX̃ ,OE) = Ext•(OX ,p∗OE) = Ext•(OX ,Op) = C

Many homogenous vector bundles are exceptional, e.g. the tangent bundle of projective space

found in Example 1.47.

Deformable objects are in general not exceptional (as they have an Ext1), e.g. skyscraper sheaves,

line bundles on curves.
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Remark 1.38: Calabi-Yau’s don’t admit exceptional objects by Serre duality. However, they

do admit spherical objects, e.g. OC for a rational curve C in a K3 surface.

Definition 1.39 (Exceptional collections): A collection Ei is exceptional if each Ei is excep-

tional and there are no homs from right to left: RHom(Ei ,Ej ) = 0, i > j.

We will see in a moment that O, . . . ,O(n) is such a collection on projective space. Cannot have more,

since then we will have the cohomology of the canonical bundle ω = O(−n− 1) which is nonzero.

More generally, for a Fano, ωX = OX(−k) is antiample. Then O, . . . ,O(k − 1) is exceptional. We will

come back to this when we discuss the cubic fourfold.

We put E ⊥ F whenever RHom(E,F) = 0. This is not a symmetric relation! However, it is on

Calabi-Yau’s.

Definition 1.40 (Full exceptional collection): An exceptional collection is full if you can

generate every object by sums, shifts and cones.

Theorem 1.41 (Beilinson): On Pn, O, . . . ,O(n) is a full strong exceptional collection.

Proof. Step 1: First, we check that ⟨O, . . . ,O(n)⟩ is a strong and exceptional collection.

Consider the morphisms between two elements, where 0 ≤ j ≤ i ≤ n

HomDb(Pn)(O(i),O(j)[l]) = Rl Hom(O(i),O(j)) = RlΓ (O(j − i))

=H l(Pn,O(j − i)) =

C if l = j − i = 0,

0 otherwise

since H l(Pn,O(m)) = 0 for any m < 0 or l , 0. Hence the collection is strong and exceptional.

Step 2: Now, it remains to show that the sequence is full. That is, it generates all of Db(Pn).

We do this by finding a Koszul resolution of the diagonal, so we need to find a bundle and a section

of it which cuts it out.

Consider the projection of the product to each component

Pn ×Pn

Pn Pn

q p

We use the notation O(−1)⊠Ω(1) = q∗O(−1)⊗ p∗Ω(1). We have from [Har] the Euler sequence

0→Ω(1)→On+1→O(1)→ 0
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Noting that p∗OPn ≃ q∗OPn ≃ OPn×Pn , we can form the composition of the exact sequence under p∗

and q∗ respectively, giving

p∗Ω(1)→On+1
Pn×Pn → q∗O(1)

Tensoring with q∗O(−1), and the fact that q∗O(−1) ⊗ q∗O(1) ≃ q∗O ≃ OPn×Pn , we get the natural

composition of morphisms

O(−1)⊠Ω(1)→OPn×Pn (1.1)

The fibre of O(−1) above a point in Pn is the point considered as a one-dimensional subspace of

Cn+1, and the fibre of Ω(1) at a point l ∈ Pn is the space of maps φ : Cn+1→ C which are zero on

the line l. Hence, an element of the fibre of O(−1)⊠Ω(1) at (l, l′) ∈ Pn ×Pn is (v,φ), where v ∈ l and

φ vanishes on l′ . Looking locally over the point (l, l′), we have the evaluation map

ev : O(−1)⊠Ω(1)→OPn×Pn

sending (v,φ) to φ(v). The image of this map cuts out the same locus as the ideal sheaf of the

diagonal, so we can use the Koszul construction to get the locally free resolution for O∆

0→
∧n
O(−1)⊠Ω(1)→ ·· · → O(−1)⊠Ω(1)→OPn×Pn →O∆→ 0.

Essentially, the morphism 1.1 can be thought as a morphism

L1→Q2

where L1 = p∗O(−1) is the tautological line and Q2 = q∗Q is the universal quotient. This morphism

is a section of the Hom-bundle Hom(L1,Q2) and is zero precisely at (x,y) ∈ Pn ×Pn such that the

composition

lx ↪→ Cn+1 ↠ Cn+1/ly

is zero, where lx, ly are the lines corresponding to x,y. This happens exactly when x = y i.e. on the

diagonal.

Let E B O(−1)⊠Ω(1). We can split the above resolution into a chain of short exact sequences

0→
∧n
E →

∧n−1
E →Mn−1→ 0

0→Mn−1→
∧n−2

E →Mn−2→ 0

...

0→M1→OPn×Pn →O∆→ 0

with Mk−1 B im(
∧k E →

∧k−1E).

Let F ∈ Db(Pn). Given that q∗, p∗ and ⊗ are exact, Φ(−)(F ) : G 7→ q∗(p∗F ⊗ G) is also exact for

G ∈Db(Pn ×Pn). This gives us exact triangles

Φ∧n E (F )→Φ∧n−1 E (F )→ ΦMn−1
(F )

ΦMn−1
(F )→Φ∧n−2 E (F )→ ΦMn−2

(F )

...

ΦM1
(F )→ΦOPn×Pn (F )→ ΦO∆(F )
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We can identify that
∧kO(−1)⊠Ω(1) with O(−k)⊠Ωk(k). Then, due to the flatness of p and q, and

the projection formula, we have for each i ≤ n,

Φ∧n E (F ) = q∗(p
∗F ⊗ (O(−i)⊠Ωi(i)))

= q∗(p
∗F ⊗ (q∗O(−i)⊗ p∗Ωi(i)))

= q∗(p
∗(F ⊗Ωi(i))⊗ q∗O(−i))

= q∗p
∗(F ⊗Ωi(i)⊗O(−i) (projection formula)

= RΓ(F ⊗Ωi(i))⊗O(−i) (base change)

=H•(Pn,F ⊗Ωi(i))⊗O(−i)

Hence Φ∧n E (F ) lies in ⟨O(−i)⟩ as a tensor product. By closure under exact triangles ΦMn−1
(F ) also

lies in ⟨O(−n),O(−n+ 1)⟩. By induction, ΦMn−i (F ) lies in ⟨O(−n),O(−n+ 1), . . . ,O(−n+ i)⟩. Hence

ΦO∆(F ) is generated by O(−n), . . . ,O. But ΦO∆(F ) ≃ F . Tensoring with O(n), which is an exact

equivalence, we have the desired result.

After reviewing admissible subcategories and semiorthogonal decompositions, we will show how

to extend this to projective bundles (essentially by using the same resolution of the diagonal).

1.4.2 Admissible subcategories and mutations

Given a subcategory A ↪→D we can study its orthogonal complements:

A⊥ := {X ∈ D |Hom(A,X) = 0,∀A ∈ A}, ⊥A := {X ∈ D |Hom(X,A) = 0,∀A ∈ A}

An exceptional collection E might not be full, but we can study the leftover bit. In fact, we can

think of a Gram-Schmidt sort of process that projects to the component

D→ ⟨E⟩⊥ B {F | Exti(E,F) = 0}

Suppose we want to project out of a single exceptional object E. In analogy with vector spaces, the

orthogonal component of a vector v is given by v −⟨e,v⟩e. Here, the ⟨e,v⟩e is the bit of v that lies in

the subspace generated by e and the difference is the orthogonal component.

We can do the same thing in derived categories, except that homs are not symmetric, so there are

two ways to do this, corresponding to the left and right orthogonals.

Definition 1.42 (Orthogonal projections from single exceptional object): There are two

projection functors LE :D→ ⟨E⟩⊥, RE :D→ ⊥⟨E⟩

LE(F)B cone(RHom(E,F)⊗E→ F), RE(F)B cone(F→ RHom(F,E)∨ ⊗E)[−1]

The main point is that there are two projection functors to the subcategory ⟨E⟩ given by F 7→

RHom(E,F)⊗E and F 7→ RHom(F,E)∨ ⊗E, of which we take the cone. These two projections are
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universal, in the sense that they are the two adjoints of the inclusion functor ι : ⟨E⟩ → D. Another

way to say this is that ⟨E⟩ is an admissible subcategory, which roughly means a subcategory

equipped with projection functors.

Definition 1.43 (Admissible subcategory): A full subcategoryA closed under shifts and cones

is admissible if the inclusion ι∗ admits both a left ι∗ and a right adjoint ι!.

We call A left-admissible if only a left adjoint exists and ι∗ ◦ ι = 1, and similarly right-admissible

of only a right adjoint exists and ι! ◦ ι = 1.

For example, the image of a fully faithful functor Db(Y )→Db(X) which is induced by a FM kernel,

which has adjoints given by Serre functors.

Nonexample: the subcategory generated by skyscrapers. This has empty orthogonal complement,

but everything in it has finite support. But if one has an admissible subcategory with empty

orthogonal, it actually generates the whole category. So it is enough for an admissible subcategory

to span all skyscrapers for it to generate the derived category.

Now, we can proceed in the exact analogous way to define orthogonal projection functors, by

taking the cones of the unit and counit morphisms:

Definition 1.44 (Mutations): Given an admissible subcategory A, there are two functors

LA(F)B cone(ι∗ι
!→ F) ∈ A⊥, RA(F)B cone(F→ ι∗ι

∗F)[−1] ∈ ⊥A

which are in fact the left and right adjoints of the inclusions A⊥ ⊂ D and ⊥A ⊂D. Moreover, the

two define inverse equivalences A⊥ ≃ ⊥A

Proof. Step 1: We first show the mutation functors land in the orthogonal categories

Note that if F ∈ A, then both F ≃ ι∗ι∗F ≃ ι∗ι!F so the cone is actually zero. Hence, both of these

functors vanish on A and in fact LA lands in A⊥ whereas RA lands in ⊥A, by considering the long

exact sequence associated to cone(ι∗ι!F→ F). For any A ∈ A we have

HomD(A,ι∗ι
!F) ≃HomD(ι∗A,ι∗ι

!F) ≃

≃HomA(A,ι!F) ≃HomD(ι∗A,F) ≃HomD(A,F)

This implies by the LES that Hom(A,cone(ι∗ι!F→ F)) = 0.

Step 2: Now we show the mutation functors are adjoint to inclusions.

Recall that the mutation functors fit into exact triangles

k∗RA(E)→ E→ ι∗ι
∗E, ι∗ι

!E→ E→ j∗LA(E)

where j∗ :A⊥→D, k∗ : ⊥A→D are the inclusions.
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Since cones commute with Homs, we have that

HomA⊥(LAE,F) ≃HomD(j∗LAE,j∗F) ≃

≃HomD(cone(ι∗ι
!E→ E), j∗F) ≃ cone

(
HomD(ι∗ι

!E,j∗F)→HomD(E,j∗F)
)
≃

≃ cone(0→HomD(E,j∗F)) ≃HomD(E,j∗F)

The reason being that Hom(ι∗ι!E,j∗F) = 0 since ι∗ι!E ∈ A, j∗F ∈ A⊥. This shows that the left mutation

is left adjoint to j∗. The right mutation can be shown analogously.

Step 3: Now we show they induce equivalences between the left and right orthogonals.

Firstly, we see that LAj∗F = cone(ι∗ι!j∗F→ j∗F). But this is just j∗F since ι∗ι!j∗F = 0, which is true

since ker ι! =A⊥. So LA is the identity on A⊥ and zero on A, and similarly for RA.

Let F ∈ ⊥A. We observe that since L and R are adjoint to inclusions, which are exact, then they

themselves must be exact. So we can turn the exact triangle

ι∗ι
!F→ F→ j∗LA(F)

into

RA(ι∗ι
!F)→ RAF→ RA(j∗LA(F))

But RA vanishes onA, so we get that the first object is zero and hence the restrictions RLF ≃ RF ≃ F,

since we picked F ∈ ⊥A where R acts as the identity. We can do the same in reverse to show that

L|⊥A : ⊥A→A⊥,RA⊥ :A⊥→ ⊥A are inverse equivalences.

Corollary 1.45 (Mutations of exceptional sequences): Given an exceptional sequence ⟨E ,F ⟩,

we get mutated exceptional sequences

⟨LEF ,E⟩ = ⟨E ,F ⟩ = ⟨F ,RF E⟩.

In particular, a full exceptional sequence ⟨E1, . . . ,En⟩ gives rise to mutated full exceptional

sequences

⟨E1, . . . ,Ei−1,LEiEi+1,Ei ,Ei+2, . . . ,En⟩

and

⟨E1, . . . ,Ei−2,Ei ,REiEi−1,Ei+1, . . . ,En⟩.

Remark 1.46: This gives us a braid group action on full exceptional sequences. One interest-

ing question is when this action is transitive; see [CHS23].

Proof. We prove this for the first sequence; the other one follows by a dual argument. Restricting

to the category ⟨E ,F ⟩, we have that

LE : ⊥⟨E⟩ = ⟨F ⟩ → ⟨E⟩⊥
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is an equivalence, so LEF generates ⟨E⟩⊥. To see that it is exceptional, note that

RHom(LEF ,LEF ) = RHom(F ,LEF ) = RHom(F ,F )

since the term in the cone defining LEF is RHom(E ,F )⊗E ∈ ⊥⟨LEF ⟩ = ⟨F ⟩⊥.

Example 1.47: Consider the Beilinson exceptional sequence Db(Pn) = ⟨O,O(1), . . . ,O(n)⟩. We

have

LOO(1) = cone
(
RΓ(O(1))⊗O →O(1)

)
= cone(On+1→O(1)) = Ω(1)[1]

and

RO(1)O = cone
(
O→ RΓ(O(1))∨ ⊗O(1)

)
[−1]

= cone(O→O(1)n+1)[−1] = T [−1]

by the Euler sequence

0→Ω(1)→On+1→O(1)→ 0,

0→O→O(1)n+1→T → 0.

Hence we get full exceptional sequences

Db(Pn) = ⟨Ω(1),O,O(2), . . . ,O(n)⟩ = ⟨O(1),T ,O(2), . . . ,O(n)⟩.

The mutation functors also allow us to view admissible categories in the following way: any object

E fits into a triangle surrounded by an object of A⊥ on the right and an object of A on the left, and

similarly for ⊥A.

Corollary 1.48: If A is admissible and A⊥ = 0, then A =D.

Proof. If A⊥ = 0, then LA(F) = 0 and hence F ≃ ι∗ι!F ∈ A.

Corollary 1.49 (Autoequivalences and mutations): If Φ is any autoequivalence of D, then

Φ ◦LA = LΦA ◦Φ , and similarly for RA.

Proof. We first note that this obviously holds on A ⊂D, where both sides vanish. On ⊥A, we have

the following diagram:
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⊥A A⊥

Φ(⊥A) Φ(A⊥)

⊥ΦA (ΦA)⊥

Φ

LA

Φ

≃ ≃

LΦA

So again everything commutes as it should (since autoequivalences commute with taking orthogo-

nal complements).

Finally, any X ∈ D fits into an exact triangle A→ X→ B, with A ∈ A,B ∈ ⊥A. Then, we can apply

Φ ◦LA respectively LΦA ◦Φ to this triangle. Since both of these vanish on A we then see that

ΦLAB ≃ ΦLAX while also LΦAΦB ≃ LΦAΦX. We know the result holds on B ∈ ⊥A so it holds for

X as well.

Lemma 1.50 (Serre functors of admissible subcategories): An admissible subcategory A ⊂

D admits a Serre functor if D does, and it is given by

SA = ι! ◦SD ◦ ι∗

Moreover, A⊥ is also admissible and its Serre functor can be described as

SA⊥ = SD ◦RA|A⊥

Proof. The first of these follows by a straightforward chase around adjunctions. The second one

follows since given X,Y ∈ A⊥, then

Hom(X,SDRAY ) ≃Hom(RAY ,X)∗ ≃Hom(LARAY ,X)∗ ≃Hom(Y ,X)∗

where we use the fact that LARA = idA⊥ and furthermore the exact triangle ι∗ι!RAY → RAY →

LARAY , combined with the fact that Hom(ι∗ι!RAY ,X) = 0 for X ∈ A⊥ tells us that Hom(RAY ,X) ≃

Hom(LARAY ,X).

Definition 1.51 (Semi-orthogonal decomposition): A semiorthogonal decomposition of D is

a sequence of admissible subcategories Ai such that Aj ⊥Ai , i < j and they generate D.

We now observe how SOD’s behave with respect to mutations:

Proposition 1.52 (Mutations of semiorthogonal decompositions): If we have an SOD D =

⟨C,A,B⟩, then

L⟨A,B⟩ = LA ◦LB ,R⟨A,B⟩ = RB ◦RA
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Proof. We start with the triangle defining LB(F):

[β∗β
!F→ F] = LBF

We apply LA to this and get

[LAβ∗β!F→ LAF] = LA ◦LBF

This is the same as the complex

[[α∗α
!β∗β

!F→ β∗β
!F]→ [α∗α

!F→ F]]

Firstly, since there are no Homs from B to A, then α∗α!β∗β
!F ∈ B ∩A = 0, so the first cone is just

β∗β!F. Then, for the same reason, we see the middle map is zero and the cone can be replaced by

[α∗α
!F ⊕ β∗β!F→ F] = LA ◦LBF

But this is precisely the definition of L⟨A,B⟩, since the adjoints to the inclusion α∗ ⊕ β∗ are α! ⊕ β!.

The proof for the right mutation is analogous.

We finish by mentioning a few facts about semiorthogonal decompositions coming from left resp.

right admissible subcategories:

Proposition 1.53 (Associated semiorthogonal decompositions): Suppose α : A → D is

left-admissible with left adjoint α∗. Then there is a semiorthogonal decomposition

D = ⟨α(A),kerα∗⟩

Similarly, if β : B → D is right-admissible with right adjoint β!, we have a semiorthogonal

decomposition

D = ⟨kerβ!,β(B)⟩

Proof. The proof is similar to the one about admissible subcategories, except we only have one

adjoint. We only cover the right admissible case: again fit an object E into a triangle

ββ!E→ E→ cone

We show that the cone lies in kerβ! as follows: applying β! to the triangle, we need to consider

β!ββ!E→ β!E→ β!cone

We would like to show the first map is an isomorphism, from which the result follows and hence

we can generate any object as the cone of a morphism between objects in the s.o.d.
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This essentially follows since the composition

β!E→ β!ββ!E→ β!E

is the identity, by the fact that β! is right adjoint to β, as well as the condition that β!β = 1.

Example 1.54 (Relative exceptional SOD): Let f : X→ Y be a map and E be a relative excep-

tional object. Then we have an adjunction

Db(Y ) Db(X)

E⊗f ∗−

f∗Hom(E ,−)

⊣

and moreover the composition is the identity, by assumption that E is relative exceptional:

f∗Hom(E ,E ⊗ f∗F ) = f∗Hom(E ,E)⊗F = F

Hence, we can apply 1.53 and get the following s.o.d.:

Db(Y ) = ⟨kerf∗Hom(E ,−),E ⊗ f ∗Db(X)⟩

1.4.3 The projective bundle and blowup formulas

We now focus on two important semiorthogonal decompositions associated to projective bundles

and blowups.

Projective bundle formula

Proposition 1.55 (Projective bundle formula for derived categories): Given the projectivi-

sation p : PE → B of a vector bundle of rank r + 1 we have a semiorthogonal decomposition

Db(P(E)) = ⟨p∗Db(B),p∗Db(B)⊗Op(1), . . . ,p∗Db(B)⊗Op(r)⟩

Proof. Step 1: orthogonality.

We see that p∗ is fully faithful:

RHom(p∗F,p∗G) = RHom(F,p∗(p
∗G⊗OP(E))) = RHom(F,G)

since p∗OP(E) = OX . So each of the bits is admissible.

We also need to show there are no Homs from right to left, which follows more or less since

H•(Pr ,O(−i)) = 0, i = −1, ...,−r.

RHom(p∗F ⊗O(i),p∗G⊗O(j)) = RHom(F,p∗(p
∗G⊗O(j − i))) =

= RHom(F,G⊗ p∗O(j − i)) = 0, since j − i ∈ {−1,−2, ...,−r}
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for i < j. We could also have argued using 1.54 by applying it many times to the relative exceptional

line bundles O(i): the fact they are relative exceptional follows from the fact that p∗OPE = OB for a

projective bundle.

Step 2: We now show generation. We do this by resolving the diagonal just as we did for Pn, but

now for a projective bundle: we have an Euler sequence as before

0→O→ p∗E ⊗Op(1)→TPE/B→ 0

since

Tp := TPE/B ≃Hom(Op(−1),Q) ≃
Hom(Op(−1),Q⊕Op(−1))

Hom(Op(−1),Op(−1))
≃
Hom(Op(−1),p∗E)

O

We can twist by Op(−1) to get the sequence

0→Op(−1)→ p∗E →Q→ 0

As in the proof of Beilinson’s theorem 1.41, this allows us to realize the diagonal on the projective

bundle as the zero locus of a section of

Hom(Op(−1)⊠O,O⊠Q) ≃ Op(1)⊠Q

and hence produce a Koszul resolution

0→
∧r
Op(−1)⊠Q∗ · · · →

∧i
Op(−1)⊠Q∗→ ·· · → Op(−1)⊠Q∗→OPE×PE →O∆→ 0

In the exact analogous way, this shows that the pieces generate the full category.
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Remark 1.56 (Relative canonical bundle of projective bundle):

More generally [GW, Remark 13.36], given a projective bundle p : PE → B which can be

defined as a relative Proj of a sheaf of algebras ProjSym•E∨, we have the following fact:

p∗OPE (d) = SymdE∨

In particular, p∗O(−1) = E. Recall the relative Euler sequence:

0→O→ p∗E ⊗Oπ(1)→TPE/B→ 0

By twisting by −1 and taking determinants, we see that

p∗detE ≃ Op(−1)⊗det(Tp ⊗Op(−1)) ≃ Op(−r)⊗det(Tp)

and so

ωp ≃ p∗detE∨ ⊗Op(−r)

Now, to understand the derived pushforward of the relative canonical bundle, we can use

Grothendieck-Verdier duality:

OB =Hom(p∗OPE ,OB) ≃ p∗Hom(OPE ,p!OB) ≃ p∗ωp[r]

Hence, p∗ωp ≃ OB[−r], and so we conclude that p∗Op(−r) ≃ detE[−r].

This allows us to talk about blowups, since over the exceptional locus they are given by a projective

bundle.

Twisted projective bundle formula

We quickly mention a twisted version of the projective bundle formula due to Bernardara [Ber09].

In general, a projective space bundle Pr → P → B need not be a projectivized vector bundle - it

is only locally so. Let’s say that over an open cover U , P |U ≃ PEU . Then, on overlaps we have

isomorphisms PEU ≃ PEV but in order to lift this to an isomorphism of vector bundles EU ≃ EV ,

we need a choice of lift from PGL(r,U ∩V ) to GL(r,U ∩V ). This choice is not canonical, and hence

on triple overlaps we get an obstruction cocycle α ∈ Γ (C×,U ∩V ∩W ) i.e. an element of H2(B,O×B).

This element is called the Brauer class of the Brauer-Severi variety P .

What we get is a twisted vector bundle (E ,α) such that the gluing cocycles with values in GL(r)

satisfy

ψ12 ◦ψ23 = αψ13

This is an honest vector bundle precisely when α = 1.

We can rephrase this via the long exact sequence associated to

0→ C×→GL(r)→ PGL(r)→ 0
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The Brauer-Severi variety P gives us a class [P ] ∈H1(B,GL(r)) whose boundary map is the Brauer

class α.

Essentially all the nice compatibilities between derived functors carry over to the twisted setting,

following Caldararu’s PhD thesis [Cal00].

Proposition 1.57 (Bernardara twisted decomposition [Ber09]): If P → B is a Brauer-Severi

variety, then there is a semiorthogonal decomposition

Db(P ) = ⟨D0, ...,Dr⟩

where each Dk ≃Db(B,α−k).

The pieces of the semiorthogonal decomposition are essentially p∗Db(B)⊗Op(k). The proof boils

down to using the local-to-global spectral sequence to show there are no homs from right to left,

as well as using a resolution of the diagonal as before to show they generate.

Blowup formula

Let Z be a smooth subvariety of Y of codimension c. Consider the blow up X = BlZ (Y ) which fits

into the fibered square below, with E the projectivisation P(N ) of the normal bundleNZ/Y .

E X

Z Y

p π

i

j

Note that the blow-up has projective fibres, so π∗OX = OY . Taking the fibre product X ×Z, for

integer k we can consider OE(kE) as an element of the product, so can define the collection of

Fourier Mukai transforms indexed by the integers,

Φk := i∗ (OE(kE)⊗ p∗(−)) :Db(Z)→Db(X).

By properties of Fourier Mukai transforms, Φk has left and right adjoints. Moreover, Φk is

fully faithful, which can be seen by verifying that the composition of Φk with its right adjoint

Φ !
k := p∗(OE(−kE)⊗ i!(−)) is isomorphic to the identity on Db(Z). Moreover the right adjoint allows

us to see the Db(Z) as an admissible subcategory of Db(X) under Φk . Consider the fact from [Huy].

Proposition 1.58 ([Huy]): Suppose f : S → T is a projective morphism of smooth projective

varieties. If f∗OS = OT , then the pullback

f ∗ :Db(T )→Db(S)

is fully faithful and induces an equivalence of Db(T ) with an admissible triangulated subcategory

of Db(S).
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Hence we can see Db(Y ) as an admissible subcategory of Db(X) under π∗. Denote the images

D−k = Im(Φk) and D0 = π∗Db(Y ) which are admissible in Db(X).

Lemma 1.59: The sequence

D−c+1, . . . ,D−1,D0

is a sequence of semiorthogonal admissible subcategories in Db(X).

Proof. We already know that each component is admissible. To see that they are orthogonal in the

left direction, take integers −c+ 1 ≤ l < k < 0, and E ,F ∈Db(Z). Let i∗ be the left adjoint to i∗. Then

we have

Hom(i∗ (p
∗F ⊗OE(−kE)) , i∗ (p

∗E ⊗OE(−lE))) ≃Hom(i∗i∗p
∗F ,p∗E ⊗OE((k − l)E))

From [Huy, Corollary 11.4], we have a distinguished triangle

p∗F ⊗OE(−E)[1]→ i∗i∗p
∗F → p∗F → p∗F ⊗OE(−E)[2]

So using the projection formula the above is equal to

Hom(p∗F ,p∗E ⊗OE((k − l)E)) ≃Hom(F ,p∗(p∗E ⊗OE((k − l)E)))

≃Hom(F ,E ⊗ p∗OE((k − l)E))

Since the fibres of p are Pc−1, then if −c+ 1 < l − k < 0, p∗OE((k − l)E) = 0. Hence the above is equal

to 0, so Hom(F ,E ⊗ p∗OE((k − l)E)) = 0, and Dl ⊂ D⊥k .

Now take E ∈Db(Y ), and F ∈Db(Z). Similarly, we have

Hom(π∗E , i∗(p∗F ⊗OE(−lE))) ≃Hom(E ,π∗i∗(p∗F ⊗OE(−lE)))

≃Hom(E , j∗p∗(p∗F ⊗OE(−lE)))

≃Hom(E , j∗(F ⊗ p∗OE(−lE)))

but as −c+1 ≤ l < 0, p∗OE(−lE) = 0. HenceDl ⊂D⊥0 . We have shown that the collectionD−c+1, . . . ,D0

is semiorthogonal.

Theorem 1.60 (Bondal-Orlov blowup formula [BonOrl95]): Let Z be a smooth subvariety

of Y of codimension c, and X = BlZ (Y ). Then we have a semi orthogonal decomposition

Db(X) = ⟨D−c+1, . . . ,D−1,D0⟩

The proof follows directly from the lemma, and the assertion that this collection does indeed

generate Db(X), which is shown in [Orl93].
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1.5 Spherical objects and spherical twists

Definition 1.61 (Spherical object): A spherical object is one which

1. “Is self-dual with a twist”: E ⊗ωX ≃ E, and

2. “Has the cohomology of a sphere”:

Exti(E ,E) = HomDb(X)(E ,E[i]) =

C if i = 0,dimX

0 otherwise.

Note that 1. implies HomDb(X)(E ,E[i]) ≃HomDb(X)(E ,E[dimX − i])∗ by Serre duality. It follows that

E∨ is also spherical because RHom(E ,OX )⊗ωX ≃ RHom(E ⊗ωX ,OX ).

For any E we have the trace map E∨⊗E →OX , defined in the usual way for locally free sheaves and

then extended to the derived category by locally free resolutions. This induces a map q∗E∨⊗p∗E →

O∆ over X ×X, since q∗E∨ ⊗ p∗E restricts to E∨ ⊗E on the diagonal.

Definition 1.62 (Spherical twist): The spherical twist along E is the Fourier-Mukai transform

TE :Db(X)→Db(X) with kernel given by the cone of the map q∗E∨ ⊗ p∗E →O∆.

Proposition 1.63: The spherical twist of F along E can be computed as the cone on the evaluation

map:

TE (F ) = cone(RHom(E ,F )⊗k E → F ). (1.2)

Remark 1.64: Taking cones is not functorial, so the spherical twist functor is only defined up

to non-unique isomorphism, and the formula in Proposition 1.63 does not a priori define a

functor. The spherical twist gives a functorial way of choosing the cone in this formula by

moving the non-uniqueness into the kernel of a Fourier-Mukai transform.

Proof. Since the Fourier-Mukai transform is exact in the kernel the twist of F is the cone on

Φq∗E∨⊗p∗E (F )→ ΦO∆(F ) = F , and

Φq∗E∨⊗p∗E (F ) ≃ p∗(q∗(E∨ ⊗F )⊗ p∗E)

≃ p∗q∗(E∨ ⊗F )⊗E

≃ RHom(E ,F )⊗C E

by the projection and base change formulas.

36



Remark 1.65: If E is an exceptional object, then this is precisely the formula for the left

mutation LE . In this case we can view (1.2) as a kind of Gram-Schmidt formula, pro-

jecting F onto ⟨E⟩⊥ with respect to the “inner product” RHom(−,−) by “subtracting off”

RHom(E ,F )⊗C E.

Proposition 1.66 (Spherical twists are autoequivalences): If E is a spherical object then

TE :Db(X)
∼−→Db(X) is an autoequivalence.

Proof. The left and right adjoints are given by tensoring the kernel with q∗ωX [dimX], respectively

p∗ωX[dimX], and so coincide because E ⊗ωX ≃ E and E∨ ⊗ωX ≃ E∨, recalling that E∨ is also

spherical. So it suffices to show that TE is fully faithful. (Then taking cones on the counit

decomposes Db(X) into the essential image and the objects sent to zero by the adjoint, but Db(X) is

indecomposable for connected X.)

Note that {E} ∪ E⊥ is a spanning class (tautological on one side, and follows from Serre duality on

the other), so it suffices to check Hom(TE (E),TE (E)) and Hom(TE (F ),TE (G)) for F ,G ∈ E⊥. But TE

restricts to the identity on E⊥ by Proposition 1.63, and TE (E) = E[1−dimX] with idE mapping to

idE[1−dimX] from RHom(E ,E) = C⊕C[dimX], again using Proposition 1.63.
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2 Flips and flops

2.1 Standard flip

Let X be a smooth variety of dimension and a subvariety Y ≃ Pk with normal bundle NY /X ≃

O(−1)⊕l+1 , where l = codimPk − 1. Assume l ≤ k. Consider the blow-up π : X̃→ X along Y , so that

the exceptional locus Ỹ = P(N ) is isomorphic to Pk ×Pl .

We get a contraction π+ : X̃ → X+ that realizes X̃ as a new blow-up by projecting to the Pl

component of the exceptional locus, giving a new variety X+ with Y + ≃ Pl ⊂ X+ that fits into the

following diagram.

Ỹ

X̃

Y X X+ Y +i+i

π π+

j

p p+

Where π (resp. π+) restricted to Ỹ is equal to p (resp. p+). This is the construction of the standard

flip. If further l = k, this is the standard flop.

By the adjunction formula, the restriction of the canonical sheaf ωX to Y is given by

ωX |Pk≃ O(l − k)

and the canonical sheaf of a blow-up is given by the formula

ωX̃ ≃ π∗ωX ⊗OX̃(lỸ )

Moreover, the restriction OX̃(Ỹ ) |Ỹ≃ p∗OY (−1)⊗ p+∗OY +(−1). Hence we have that

ωX̃ |E ≃
(
π∗ωX ⊗OX̃(lỸ )

) ∣∣∣∣
Ỹ

≃ p∗(ωX
∣∣∣
Y

)⊗OX̃(Ỹ )
∣∣∣∣
Ỹ

≃ p∗OY (l − k)⊗ p∗OY (−l)⊗ p+∗OY +(−l)

≃ p∗OY (−k)⊗ p+∗OY +(−l)

which we denote O(−k)⊠O(−l). Hence we have the following theorem.

Theorem 2.1 ([Huy]): For the standard flip as described above, the composition

π∗π
+∗ :D(X+)→D(X)

is full and faithful, with an equivalence in the case of l = k.
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In the above case of the standard flop, the equivalence of derived categories is induced by the

standard blow up and blow down. In the next section, we will see the effect of more birational

transformations on the derived category in the case of toric varieties, in particular those described

by GIT quotients.

2.2 Semi-orthogonal decomposition of GIT quotients

2.2.1 Toric Geometry

Toric GIT gives a combinatorial way of seeing toric varieties as GIT quotients with respect to

different stability conditions. We can use variations of GIT quotients to understand how changes

in stability conditions induce certain birational transformations. This is especially relevant to the

MMP, which has an interpretation in terms of Toric GIT, with each step realised as a wall crossing.

Let’s recall some basics of toric geometry. Let M = Hom(T n,C∗), and N = M∨. Recall that toric

varieties are determined by their fan in NR, with an exact sequence and its dual

0→ L→Zm
ρ
−→N → 0

0→M→ (Zm)∨
Q
−→ L∨→ 0

The map Q describes an action of (C∗)n on the vector space Cm, given by a n×m weight matrix, so

we can form a GIT quotient with respect to this action. The image of each basis element under Q

defines a fan in L∨, which we call the secondary fan. The anticanonical divisor (here denoted detV )

is associated to the sum detV =
∑
qi∈Q qi of the column of the weight matrix, and the ample cone

of the secondary fan is defined as the interior of the maximal cone containing the anticanonical.

Moreover, we call a Toric GIT problem Calabi-Yau if detV = 0.

We can define semi stable loci by a choice of character χ in L∨ (which corresponds to a (C∗)n

-linearised line bundle Lχ on Cm).

Xss(Lχ) = {a ∈ Cm : ∃n > 0, f ∈ Γ (Lnχ) s.t.f (a) , 0}

In practice, the semistable locus for a certain character Xss(Lχ) is calculated as the vanishing locus

of the irrelevant ideal.

Definition 2.2 (Semistable Locus): For a stability condition χ in the secondary fan, define the

irrelevant ideal Irrχ as

Irrχ = (xi1 , . . . ,xir | χ ∈
〈
qi1 , . . . , qir

〉
+

)

That is, the ideal generated by monomials corresponding to cones containing χ. Then Xss(Lχ) =

V (Irr)

From this we get the quotient

Cm//χT n :=
(
Cm −Xss(Lχ)

)
/T n
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The columns of the weight matrix generate rays of a fan in L∨ , which we call the secondary fan.

This gives a wall and chamber decomposition of characters. It can be shown that two stability

conditions chosen from the interior of the same chamber will give the same quotient.

Example 2.3 (Hirzebruch Surface): Consider the action of (C∗)2 = T 2 on V = C4, with weight

matrix

Q =

1 1 0 −2

0 0 1 1


(λ,µ)(x1,x2,x3,x4) =

(
λx1,λx2,µx3,

µ

λ2 x4

)
We get a wall and chamber decomposition

q0, q1

q2
q3

�χ1

�χ2

Note that detV = (0,2)T The characters define GIT quotients:

• X1 = C4//χ1
T 2 = P(OP1 ⊕OP1(2)) = F2

• X2 = C4//χ2
T 2 = P(1,1,2)

Note that F2 is the minimal resolution of P(1,1,2), related by a blow up at its singular point.

Wall crossings can give us other standard birational transformations.

Example 2.4 (Atiyah Flop): Consider the action of C∗ on C3 with weights (1,1,−1). There

are two quotients: X+ corresponding to the chamber with the weights (1,1), i.e. take the

unstable locus to be x = y = 0, or X− corresponding to the chamber with −1, i.e. take

unstable locus z = 0. With these stability conditions we have

X+ = O(−1)P1 X− = C2,

where the wall crossing from the X− to X+ give the blow up at a point.

Now suppose C∗ now acts on V = C4 with coordinates x1,x2, y1, y2, and weight matrix

Q =
(
1 1 −1 −1

)
. Defines two chambers in the secondary fan: χ+ > 0 and χ− < 0, so we

get unstable locus x1 = x2 = 0 and y1 = y2 = 0. Hence

X+ ≃ O(−1)⊕2
P1 ≃ X−

This is an example of the Atiyah flop, related by a blow up and its flopping contraction.
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We say a variety is a minimal model if has nef canonical divisor. In the GIT picture, we say a GIT

quotient is minimal if −detV lies in the closure of the chamber corresponding to the variety.

2.2.2 Wall Crossing Formula

Let V be a vector space of dimension n, and let T be an algebraic torus. Denote detV =
∑
i qi ,

where qi is the ith column of the weight matrix Q.

Definition 2.5 (1-Parameter Subgroup): Given a reductive, linear algebraic group G, we call

a one parameter subgroup of G (the image of) an injective homomorphism λ : Gm→ G. If G acts

on a space V , this induces an action of Gm on V defined by λ, of which we denote the fixed locus

V λ.

Consider a toric GIT problem defined by the action of a group T on a vector space V . Let C+ and

C− be adjacent chambers of the secondary fan in L∨R separated by a wall W . Assume that detV

is on the C+ side of the adjoining wall W . The wall W corresponds to an orthogonal (primitive)

one-parameter subgroup λW ∈ L.

We can define a value µ = (detV )(λW ). Let λW be such that µ ≥ 0, so is pointing to the C− side of

the wall. µ is a combinatorial value which will (roughly) tell us which chamber admits the ‘bigger’

GIT quotients.

Let X+ (resp. X−) be the GIT quotient V //θ+
T (resp. V //θ−T ) corresponding to the chosen generic

stability condition θ+ ∈ C+ (resp. θ−). Recall from the previous section that GIT quotients are

invariant across stability conditions in the interior of a given chamber.

We can define a somewhat ‘smaller’ GIT problem associated to a subset S ⊂ {1, . . . ,n}, or more

specifically a subset QS of the weights corresponding to the set S, which in our case are the si

columns of the weight matrix for si ∈ S. These weights generate a sublattice L∨S ⊂ L
∨
R, allowing us

to define a GIT problem from the exact sequence

MS → ZS
QS−−→ L∨S

This GIT problem gives us a strictly lower dimensional variety Z, which is a GIT quotient of the

fixed locus V λW by T /λW (where here T /λW is the quotient by the image of Gm under λ). Here,

our subset QS is the collection of weights which are orthogonal to λW , that is, the weights which

lie in the space spanned by W . We can see that lattice L∨S is exactly the character lattice for the

action of T /λW , since the the weights span the space orthogonal to λW . Moreover, the subspace of

V fixed by λW corresponds to the lattice ZS in the exact sequence. We choose a character θW in

the interior of the wall W , to form the quotient

Z = V λW //θW (T /λW ) .
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Definition 2.6 (Wall data): Given a wall W in the secondary fan, define the Wall Datum as the

tuple (Z,µ), where µ = (detV )(λW ) and Z = V λW //θW (T /λW ) as described above.

Hence we get the theorem due to [Halp14] and [BFK14].

Theorem 2.7 (Wall Crossing Formula): Consider GIT quotients X+,X− related by a wall

crossing across W with wall datum (Z,µ) as described above.

If µ > 0, we have a semi-orthogonal decomposition given by

D(X+) = ⟨D(X−),D(Z), . . . ,D(Z)⟩

with µ copies of D(Z) appearing.

If µ = 0, the wall crossing induces a flop, and we have an equivalence of categories

D(X+) ≃ D(X−).

This theorem was proved in [BFK14] in much greater generality than used here, where such a

decomposition holds for a smooth quasi-projective variety acted upon by a linear algebraic group,

and a wall-crossing between two G-equivariant line bundles. However, to state the theorem in full

generality requires more technical machinery than is necessary for the toric case for the purposes

of our examples below.

Example 2.8: Recall Beilinson’s exceptional collection [Beil78] which forms a SOD of D(Pn).

Since Pn is a toric variety, we can realise it as the GIT quotient with respect to the usual

action of C∗ on V = Cn+1. So the weights are
(
1 1 . . . 1

)
, with detV = n+ 1. The wall

crossing to X− = ∅, retrieves the decomposition
〈
pt, . . . ,pt

〉
with n+ 1 copies of the derived

category of a point, corresponding to the exceptional collection of line bundles on Pn.

Example 2.9: Recall the wall crossing of example 2.4, where the action of C∗ on C3 with

weights (1,1,−1) gives

X+ = O(−1)P1 X− = C2,

The wall crossing formula gives us the decomposition

D(O(−1)P1 ) =
〈
C2,pt

〉
which recovers Orlov’s blow-up formula from theorem 1.60.

Example 2.10: Now consider the action of C∗ on C3 with weights (1,1,−2) corresponding to

coordinates x1,x2, y1, y2 . Since detV = 0, any wall crossing will give us a flop. Indeed, we

have stability conditions, giving quotients

X+ = OP1(−2) X− = [C2/Z2]
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where [C2/Z2] is the orbifold with the action of Z2. Then we get a derived equivalence

D(OP1(−2)) ≃ D([C2/Z2])

2.2.3 Homological Mori Program

The above theorem immediately yields a method for calculating a semi-orthogonal decomposition

which is ‘maximally refined’, in that none of its components can be factored further through

wall-crossings. This follows a similar algorithm to the toric Mori program. Indeed, in such a GIT

problem, a sequence of adjacent wall crossings come from sequences of birational operations,

specifically directed flips, flops and divisorial contractions. This sequence can be seen by consid-

ering a path γ : [0,1]→ L∨ in the cocharacter lattice, such that γ(0) is in the ample cone of the

secondary fan,γ does not intersect a codimension 2 cone in L∨, and γ(1) is outside the support of

the fan. Such a path γ is called a run of the toric Mori program.

Starting with some fixed stability condition θ1 and its corresponding variety X1, a wall crossing

across the wall W (away from detV ) gives the decomposition into X2, the variety defined by the

wall crossing, and µ copies of the variety ZW , the variety defined by the wall datum for W . We can

perform repeated wall crossings to decompose X2 until a minimal model Xmin is reached. We will

then be left with a factor of Xmin , and factors corresponding to the GIT problems V λW //λW for

each wall W crossed, and can hence repeat the process of decomposition on each of the remaining

non-minimal factors.

Example 2.11 (Running the toric Mori program [KS22]): Let (C∗)2 act on C6 with weights

Q =

1 1 −1 0 0 0

0 0 1 1 1 −1


Which gives secondary fan below

q0, q1

q3, q4q2

�χ1

�χ2

q5

�χ3

�χ3

Since the anticanonical is

1

2

, we will start the run of the toric Mori program in the chamber

containing χ3, along a straight-line path intersecting the walls
〈
q3,q4

〉
+ and

〈
q2

〉
+.

The irrelevant ideal is Irr(χ3) = ⟨x3x0,x4x0,x3x1,x4x1,x2x0,x2x1⟩, so the GIT quotient is

X3 = C6 \Xss(χ3)/(C∗)2 = Tot(O(−1)P ) for P = P(O⊕2 ⊕O(−1))P1 . From here, we cross the
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wall
〈
q3,q4

〉
+. Irr(χ2) = ⟨x2x3,x2x4,x2x1,x2x0⟩, so X2 = C2 \Xss(χ2)/(C∗)2 = O(−1)P3 . The

wall between them has 1-PS

1

0

, so µ = 1. Tot(O(−1)P ) is a blow up of Tot(O(−1)P3 ) along

O(−1)P1 , so the blow up formula gives wall data (Z = O(−1)P1 ,1), giving the decomposition

D(X3) = ⟨X2,O(−1)P1⟩

Now let’s cross the wall
〈
q2

〉
+. This has 1-PS

1

1

, so µ = 3. Irr(χ1) = ⟨x2x5⟩, so X1 =

(C6 \ {x2 = 0} ∪ {x5 = 0})/(C∗)2 = C4. We can see that O(−1)P3 is the blow up of C4 at a point,

so the wall data is (C2,3), giving

D(X2) =
〈
pt,pt,pt,C2

〉
Recall from Example 2.4, O(−1)P1 is a toric GIT quotient defined by the blow up of C2 at a

point, so we have

D(O(−2)P1 ) =
〈
pt,C2

〉
hence we have the decomposition

D(X3) =
〈
pt,C2,pt,pt,pt,C2

〉
.

We are interested in finding examples of nontrivial equivalences of derived categories induced

by flops, which in the toric picture can be seen by considering the Calabi-Yau case.From this, it

is clear that µ = 0 for all walls W in the secondary fan, so any wall crossing induces a flop on

the GIT quotients. Moreover, this gives us a way to see the nontrivial autoequivalences which

come from these wall crossings. In particular, we will see that these autoequivalences have a nice

interpretation as twists around spherical functors.

2.3 Windows and Spherical functors

First, we want to make some generalizations on the theory of spherical objects. Recall that a

spherical object E ∈ D(X) satisfies the property that

Hom(E ,E[i]) =


C i = 0,dimX

0 otherwise

and the spherical twist of an object F around E is an autoequivalence defined as the cone

TE = C(Hom(E ,F )⊗E ev−−→ F )

We define spherical functors analogously.
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Definition 2.12: A functorial exact triangle is a ‘triangle’ of exact functors F1,F2,F3 : C →D,

equipped with natural transformations

F1(−)→ F2(−)→ F3(−)→ F1(−)[1]

such that for every object F ∈ C, we get the exact triangle in D given by

F1(F )→ F2(F )→ F3(F )→ F1(F )[1]

Consider an adjoint pair of exact functors L ⊣ R. Let η : IdD→ R ◦L be the unit and ϵ : L ◦R→ IdC

the counit.

Definition 2.13: A functor between triangulated categories F :A→B is called spherical if it

admits an adjunction F∗ ⊣ F and functorial exact triangles

F∗F
ϵ−→ IdA→ T → F∗F[1]

C→ IdB
η
−→ FF∗→ C[1]

such that T and C are equivalences. Then we call T (resp. C) the spherical twist(resp. cotwist)

along F.

Let X+ and X− be two toric varieties related by a flop induced from a wall crossing in a Calabi-Yau

GIT problem. In the formulation of the wall-crossing decomposition, we get a variety Z from

the wall W which may appear in as a factor. Z is the toric variety arising from the GIT problem

induced by a character on the ray spanned by the wall. In [HLS16], they show that we have

countably infinitely many equivalences ψi :D(X−)
∼−→D(X+) such that the autoequivalence ψ−1

i+1◦ψi
of D(X−) is a spherical twist around a spherical functor

F : G →D(X−)

for a category G (to be defined later).

We examine this twist in more detail for the case of the standard flop (cf. [DS14]) before stating

the more general theorem.

Recall once more the action of T = C∗ on V = C4 acting on coordinates x1,x2, y1, y2 with weights(
1 1 −1 −1

)
respectively. So X+ and X− are both isomorphic to O(−1)⊕2

P1 , related by a flop

along the zero section P1
x1,x2

or vice versa. Clearly their derived categories are equivalent. Since X+

and X− are the quotients of V minus an unstable locus (x1 = x2 = 0 or y1 = y2 = 0) by T = C∗, we

can view them as sub-quotient stacks of the Artin quotient stack X = [V /T ], with derived category

D(X). We thus have the inclusions

i± : X±→ X

Note that D(X) contains the line bundles O(i) (corresponding to characters of C∗). Hence we define

subcategories of D(X) by

Wt = ⟨O(t),O(t + 1)⟩
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for any t ∈ Z. We can restrict the pullback of the inclusions to get equivalences

i∗± :Wt
∼−→D(X±)

This equivalence can be verified by considering that X± is a quasi-projective variety, so we can

make use of Beilinson’s theorem stating that O(t),O(t + 1) is a strong, full, exceptional collection

on P1, so the direct summands of the bundle O(t)⊕O(t + 1) generate D(O(−1)⊕2
P1 ). Hence we can

define the equivalence and then autoequivalence

ψt := i+ ◦ i∗− :D(X−)→D(X+) Φt := ψ−1
t−1ψt :D(X−)→D(X−)

We callWt a window subcategory, in that D(X−) is passing through a smaller intermediate than

the whole of D(X). Moreover, the autoequivalence can be composed from passing through any two

windows, i.e.

wl,t := ψ−1
l ψt

This is called the ‘window shift’.

Remark 2.14: The method from this examples can be generalized to the action of C∗ on Ck

so long as the GIT problem is still Calabi-Yau. Assuming the sum of the positive weights

is d (so the sum of the negative weights is −d), window shift autoequivalences can be

constructed with the subcategory

Wt = ⟨O(t), . . . ,O(t + d − 1)⟩

Consider the effect of Φt on our generators O(t) and O(t + 1). Clearly ψt sends both line bundles to

themselves on X+. Next we apply ψ−1
t−1, but first both line bundles need to be resolved in such a

way that they are written in terms of O(t − 1) and O(t). We already have this for O(t). For O(t + 1),

the pullback of the Euler sequence on the zero section P1 gives the Koszul resolution

0→O(2)


x2

−x1


−−−−−−→O(1)⊕2

(
x1 x2

)
−−−−−−−−−→O

so O(t + 1) is quasi-isomorphic to the complex
[
O(t)⊕2→O(t − 1)

]
, and we have image of each

generator under Φt .

O(t) 7→ O(t)

O(t + 1) 7→
[
O(t)⊕2→O(t − 1)

]
[−1].

We can see that computing the image of an arbitrary object in E ∈ D(X−) under Φt requires us to

resolve E in terms of the generators of the first window, then resolve ψt(E) in terms of generators

of the second. This becomes more difficult in the general case. [DS14] shows the existence of an

endofunctor on the ambient quotient stack T : D(X)→ D(X) which identifies objects from one

window with another, called the Transfer Functor. To see it in action, let’s consider the case of t = 1.
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Since both X− and X+ have exceptional locus P1, which can both be contracted to a point giving us

the following maps

{pt} π←− P1 j
−→ X−

This can be generalised to maps from the substack identified with the quotient of C2
y1,y2
⊕ {0} by

C∗, giving the correspondence

{pt} Π←−− [C2/C∗]
J
−→ X

The transfer functor is then defined as the twist around the functor R := Π∗J
! : D(X−)→D({pt})

with left adjoint L := J∗Π∗, given by

T := Cone
(
L ◦R→ IdD(X)

)
This functor restricts to an autoequivalence T :D(X−)→D(X−) which is similarly the twist for the

adjunction L ⊣ R = π∗j ! :D(X−)→D({pt}). That is, T fits into a functorial exact triangle

L ◦R ϵ−→ IdD(X−)→ T → L ◦R[1]

Where T is the cone on the counit ϵ.

Theorem 2.15 ([DS14]): T is the same as Φ1.

Proof. The proof of this statement relies on T satisfying three key conditions.

First, T must sendW1 toW0. This follows from that fact that the relative canonical sheaf ωJ of J is

O(−2) with relative dimension −2, so we have

Π∗J
!(O(1)) = Π∗

(
ωJ ⊗ J∗O(1)[−2]

)
= Π∗ (O(−2)⊗ J∗O(1)[−2])

= Π∗O(−1)[−2]

= 0

Hence L ◦R(O(1)) = 0, and the cone on ϵ is the identity, so T(O(1)) = O(1) ∈W′ .

For O(2),

Π∗J
!(O(2)) = Π∗

(
ωJ ⊗ J∗O(2)[−2]

)
= Π∗ (O(−2)⊗ J∗O(2)[−2])

= Π∗O[−2]

= Opt[−2]

Pulling back from the point and pushing forward onto X, we get the sheaf OC2 [−2]. We want to

take the cone on the natural transformation

OC2 [−2]
ϵ−→O(2)
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The exact sequence

0→O(2)→O(1)⊕2→O→OC2 → 0

shows us that OC2 [−2] is quasi-isomorphic to
[
O(2)→O(1)⊕2→O

]
[−2], to taking the cone over ϵ

gives us
[
O⊕2→O

]
[−1] ∈W0.

Hence we have

O(1) 7→ O(1)

O(2) 7→
[
O(1)⊕2 →O

]
[−2]

Which gives us the diagram

W1 W0

D(X+)

D(X−) D(X−)

T

i∗+

i∗−

i∗+

i∗−
ψ1

T

ψ0

Secondly, the upper triangle commutes because T must act trivially outside C2
y1,y2
⊕ {0}, i.e.

i∗+T = i∗+

This is a given from the definition, since objects on X+ are in the kernel of the composition L ◦R,

so T acts as the identity.

Thirdly, T must restrict to T , i.e. the rectangle commutes. This is due to generators O and O(−1)

not having higher cohomology, so the derived pushforwards π∗ and Π∗ at least give the same thing

onW1 , so i∗− ◦T = T ◦ i∗−.

From these, we can conclude that the lower triangle commutes, so T = Φ1.

To relate this back to the usual reference of spherical twist we can look at the functorial exact

triangle object-wise, to see that for each object E ∈ D(X−), TF is the cone

TF(E) = Cone(Hom(OP1 ,E)⊗OP1 →E)

Remark 2.16: This is just one example of a much more general statement about window

shifts, and flops in general. [DS14] prove the theorem for Grassmannian flops, which

includes the case of the standard flop we just saw. Indeed, for vector spaces V and S of

dimension d and r ≤ d respectively, the associated quotient stack for the GIT problem is

[Hom(S,V )⊕Hom(V ,S)/GL(S)]

where the standard flop is the case when d = 2, r = 1.
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Indeed, the presentation of flop autoequivalences as spherical twists is not limited to GIT quo-

toients, as proved for a certain simplicity of wall crossings in [HLS16]. Barbocovi [Bar21] proves

this fact for any flop which induces a derived equivalence, as summarised below.

Let X−
p
←− X̂

q
−→ X+ be a flop. Moreover, assume that p∗OX̂ =OX− , q∗OX̂ =OX+

, and that there are

derived equivalences

q∗p
∗ :D(X−)→D(X+), p∗q

∗ :D(X+)→D(X−)

Note that p∗ (resp. q∗) are left adjoints to p∗ (resp. q∗ ), and the properness and finite Tor dimension

gives a right adjoint p× : D(X−)→ D(X̂) and q× : D(X+)→ D(X̂). Moreover, these left and right

adjoints p∗,p∗,p×,q∗,q∗,q× are all fully faithful, preserving boundedness and coherence.

Define K = ker(p∗)∩ker(q∗) , and Kb =K∩D(X̂) ⊂ D(X̂). Kb is a thick full triangulated subcategory

of D(X̂), hence we can take the quotient Q :D(X̂)→D(X̂)/Kb , which gives us induced maps

p̄∗ =D(X̄)/Kb→D(X−)

Theorem 2.17 (Barbacovi): There is a four-periodic SOD of D(X̂)/Kb given by

〈
ker p̄∗,D(X−)

〉
=

〈
D(X+),ker q̄∗

〉
=

〈
ker q̄∗,D(X+)

〉
=

〈
D(X−),ker p̄∗

〉
which induces spherical functors Ψ+ : kerp̄∗

q̄∗−−→ D(X+) and Ψ+ : kerq̄∗
p̄∗−−→ D(X−) such that the

‘flop-flop’ autoequivalences FF+ := q∗p∗p∗q∗ and FF− := p∗q∗q∗p∗ are the spherical twists around

each functor respectively.
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3 The cubic fourfold

In this section, we will review the deep link between K3 surfaces and cubic fourfolds.

A theorem of Hasset describes the so called special cubic fourfolds, which are cubic fourfolds

containing a surface T which is not a complete intersection. They form a countable union of

divisors Cd in the moduli space PH0(O(3))/PGL(6) of cubic fourfolds which are expected to be

rational (the intuition is that for a cubic fourfold to be rational, one has to blow up a surface at

some point). They also have associated K3 surfaces: Hassett shows that the primitive cohomology

of a K3 surface embeds as the complement ⟨h2,T ⟩⊥.

Alternatively, Kuznetsov has considered the derived category of a cubic fourfold and found a

component AX . He showed that Pfaffian cubics and nodal cubics have AX derived equivalent

to K3 surfaces and conjectured [Kuz10] that X is rational if and only if AX ≃ D(S) for some K3

surface S.

In this section, we will briefly describe the Hodge theory and Torelli theorems for K3 surfaces and

cubic fourfolds. After that, we will show that the Kuznetsov component is a Calabi-Yau 2 category

and show that the cubic fourfolds containing a plane C8 are derived equivalent to a twisted K3

surface, which is an honest K3 surface whenX ∈ C8∩Cd for some other d on Hasset’s list. Finally, we

quickly sketch Addington-Thomas’ paper [AdTh14] which connects the Hodge-theoretic viewpoint

of Hassett and the derived categorical viewpoint of Kuznetsov.

3.1 A quick review of K3 surfaces

Definition 3.1 (K3 surface): A K3 surface is a compact complex surface with ωS trivial and

H1(S,OS ) = 0.

Firstly, spaces derived equivalent to K3 surfaces are also K3 surfaces: their dimensions have to be

the same because the Serre functors are isomorphic and hence the orders of the canonical bundles

are the same. Similarly, by passage to cohomology, we know that⊕
p−q=i

Hp,q(S) ≃
⊕
p−q=i

Hp,q(S ′)

Hence, since h0,1 = h1,2 by Hodge symmetry and Serre duality, we see that both are zero.

Computations using Riemann-Roch show that

2 = χ(S,OS ) =
c2

1 + c2

12
=⇒ c2(S) = e(S) = 24

Then Poincare duality shows b2 = 22.

The Hodge decomposition tells us that

H2(S,C) =H2,0 ⊕H1,1 ⊕H0,2
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But both h2,0 = h0,2 = 1 and hence h1,1 = 20. The Hodge diamond is thus:

1

0 0

1 20 1

0 0

1

Figure 1: Hodge diamond of K3 surface

Moreover, the intersection lattice is H2(X,Z) = Λ = (−E8)⊕2 ⊕U⊕3 and H2(S,Z) = (1,20,1) has

signature (3,19).

The Hodge structure on a K3 surface is then essentially determined by H2,0(S) ⊂H2(S;C) = Λ⊗C.

Thus, we can consider the period map

P :M→ PΛ⊗C

that sends a K3 surface S to the line H2,0(S). In fact, a nonzero vector in H2,0 has u2 = 0,uu > 0,

which is the defining equation for the period domain. The local Torelli theorem shows that this is

surjective and a local homeomorphism. It is not a global isomorphism: one has to mod out by the

automorphisms of the lattice Λ. In fact, it is known that K3 surfaces are determined by the period

map, i.e. by their Hodge structure:

Theorem 3.2 (Global Torelli): Two K3 surfaces are isomorphic if and only if there is a Hodge

isometry H2(X,C) ≃H2(Y ,C).

3.2 Hodge theory of cubic fourfolds

Let us first think about the Hodge diamond of X. Embed P5 via the Veronese embedding in PV3,5+1,

the space of degree 3 polynomials in 6 variables. Then, a hyperplane section of the image of P5

consists of a linear relation between the basis of monomials of this vector space, and hence is

precisely a cubic fourfold X. The Lefschetz hyperplane theorem states that then

H•(P5) −→H•(X) iso for • < 4

We thus see, by Poincare duality, that b1 = b3 = b5 = b7 = 0. Similarly, b2 = b6 = 1 and must be given

by h1,1 by Hodge theory. We have that H2(X;Z) = Z and the LES from the exponential sequence

tells us that

H1(X,OX ) −→H1(X,O∗X ) −→H2(X,Z) −→H2(X,OX )

But the first term is 0, since it is a summand ofH1(X;C) = 0. The second term is Pic(X) and the map

is c1 which lands in H1,1. Since c1(KX ) = −3 it is nonzero, so since C =H2(X;C) =H2,0⊕H1,1⊕H0,2

the only option is for h2,0 = h0,2 = 0 and Pic(X) = Z generated by a hyperplane.
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Now, the interesting bit is the fourth row, the middle dimensional cohomology. By using the

normal bundle sequence, we have that

c(TX )(1 + 3x) = (1 + x)6 = ι∗c(TP5 )

We compute c1 = 3x,c2 = 6x2, c3 = 2x3, c4 = 9x4. Then by Gauss-Bonnet,

b4 + 4 = χ(X) = ⟨9x4, [X]⟩ = 27

since pd(X) = 3ω. We conclude that b4 = 23.

We also have that H0(X,Ω4) =H0(X,OX(−3)) = 0 so h4,0 = h0,4 = 0. The only bit left is to determine

h1,3 = h3,1.

Now we can use Hirzebruch-Riemann-Roch for the cotangent bundle of X, by computing

χ(ΩX ) = −h1,1 − h1,3 =
∫
X

ch(ΩX)td(TX ) = 3
∫
P5
ωch(ΩP5 −O(−3))td(TP5 −O(3))

Because I am lazy, I used the Macaulay 2 code:

loadPackage "Schubert2"

P5 = flagBundle({1,5}, VariableNames=>{s,q})

T = tangentBundle(P5)

coT = cotangentBundle(P5)

O1 = dual(P5.Bundles#0)

w = chern(1,O1)

NX = O1^**3

coNX = dual(NX)

TX = T - NX

coTX = coT - coNX

Q = 3 * w*ch(coTX)*todd(TX)

print integral Q

This gives the answer −2, which implies h1,3 = 1.

Can try to compute h2,2 similarly: again by Hirzebruch-Riemann-Roch

h2,2 = χ(Ω2
X ) =

∫
X

ch(Ω2
X )td(TX)

The Macaulay code is:

coT2X = exteriorPower_2 coTX

A = 3*w*ch(coT2X)* todd(TX)

print integral A

This gives the correct answer 21! All in all, the Hodge diamond looks like:
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Figure 2: Hodge diamond of cubic fourfold

The primitive cohomology of the cubic fourfold looks like (0,1,20,1,0) and has signature (20,2)

which looks similar to the K3 H2(S,Z), but that one has signature (3,19).

We can see that H3,1 ≃ C and similarly to the K3 case we have a period map which to each cubic

fourfolds associates a line in the local period domain, which is one of the connected components

of the quadric hypersurface Q ⊂ PΛ defined by u2 = 0 together with the condition that −(u,v) is

a positive hermitian form. We factor out by automorphisms Γ + of H4(X,Z) which preserve (−,−)

and the hyperplane squared h2, and moreover stabilize D̃. The resulting map is

Mcubic fourfolds→D := D̃/Γ +

Voisin [Voi86] proved the following theorem, by considering the cubic fourfolds containing a

plane:

Theorem 3.3 (Global Torelli for cubic fourfolds): The period map for cubic fourfolds is

injective.

We finish off the Hodge theoretic section by a review of the results of Hassett’s paper [Hass00].

The essential idea is as follows: a generic cubic fourfold X hasH2,2
prim(X;Z) = 0, but there is a class of

special cubic fourfolds which contain some integral class T . This allows us to pass to a codimension

1 subspace of H2,2(X) which has a chance of being Hodge isometric to the primitive cohomology

of a K3 surface (recall that the issue was that a priori they have different signatures). Explicitly, we

have ⟨h2,T ⟩⊥ ⊂H2,2(X) and H2
prim(S) both of signature (2,19). Hassett determines exactly when

they could be Hodge isometric:
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Theorem 3.4 (Hassett): There is a Noether-Lefschetz divisor Cd in the moduli space of cubic

fourfolds, where d = disc⟨h2,T ⟩ for T ⊂ X a surface not homologous to a complete intersection.

This is nonempty precisely when d > 6 and d ≡ 0,2 mod 6. Moreover, these special cubic

fourfolds have an associated K3 surface in the sense above precisely when d is not divisible by 4,9

or any odd prime p ≡ −1 mod 3

The slightly awkward condition will be rephrased later, when we review Addington-Thomas.

3.3 Derived view of the cubic fourfold

We now shift gears and look at cubic fourfolds through a derived lens.

Take a cubic fourfold X in P5. This has canonical bundle KX = −3H so is a Fano of index 3. By

using Kodaira vanishing, one can show that

OX(−2H),OX(−H),OX

form an exceptional collection. The orthogonal complement is given by

AX = {F ∈ D(X) | Ext•(OX(−iH),F ) = 0}

This component, named after Kuznetsov, is very interesting, as it looks like the derived category of

a K3 surface.

We see that, by 1.23, the Hochschild homology is HH•(X) = C[−2] ⊕C25 ⊕C[2]. On the other

hand, Hochschild homology is additive with respect to semiorthogonal decomposition, and the

three exceptional objects contribute to three copies of C in degree zero, so we see that HH•(AX ) =

C[−2]⊕C22 ⊕C[2], which is exactly the Hochschild homology of a K3 surface.

These properties of the category AX make it possible that there is an honest, geometric K3 surface

associated to X. All known cases of cubic fourfolds with associated K3 surfaces are birational to

P4, which led Kuznetsov to conjecture:

Conjecture : A cubic fourfold is rational if and only if it there is a K3 surface S such that

D(S) ≃ AX .

In the subsequent section, we will explain why the Kuznetsov component is a CY2 category and

later on focus on the fundamental example of cubics containing a plane.

3.3.1 The Kuznetsov component is CY2

We now embark on the proof that the Kuznetsov component is a Calabi-Yau 2 category. What this

means is that it has a Serre functor which is just given by shifting by 2, as would be the case if it

were the derived category of an honest K3 surface.
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Let us consider a general degree d hypersurface X ⊂ Pn+1. By adjunction, its canonical bundle is

given by O(d − n− 2) and hence its Serre functor is ⊗O(d − n− 2)[n]. Moreover, the line bundles

O, . . . ,O(n+ 1− d) are all exceptional and have an orthogonal complement which gives

D(X) = ⟨AX ,O, . . . ,O(n+ 1− d)⟩

The kernel of the Serre functor

The left mutation with respect to the admissible subcategory spanned by the line bundles is, by

1.52

L⟨O,...,O(n+1−d)⟩ ≃ LO ◦ · · · ◦LO(n+1−d)

Now we notice the following: the mutation LO(i) fits into an exact triangle

Hom(O(i),F)⊗O(i)
ev−−→ F→ LO(i)F

which follows from 1.54 applied to Y = pt since O(i) are exceptional.

On the other hand, we can think of the middle as ΦO∆F and the left object as ΦO(−i)⊠O(i)F. More

precisely, by using the projection and base change formulas:

ΦO(−i)⊠O(i)F = p∗(p
∗O(i)⊗ q∗O(−i)q∗F) ≃ p∗q∗F(−i)⊗O(i) ≃

≃ OX ⊗RΓ(F(−i))⊗O(i) ≃ RΓRHom(O(i),F)⊗O(i) = RHom(O(i),F)⊗O(i)

Hence, we can conclude that LO(i) is given by a Fourier-Mukai transform with kernel

[O(−i)⊠O(i)→O∆]

Now, define

O := LO ◦ (−⊗O(1))

We see that by 1.49,

On+2−d ≃ LO ◦LO(1) ◦ ... ◦LO(n+1−d) ◦ (−⊗O(n+ 2− d)) = L⟨O,...,O(n+1−d)⟩ ◦ (−⊗ω−1)

But by 1.50, we know that the inverse of the Serre functor of AX is given by

S−1
AX = L⟨O,...,O(n+1−d)⟩ ◦S−1

X = L⟨O,...,O(n+1−d)⟩ ◦ (−⊗ω−1)[−n]

We can thus conclude that

S−1
AX = On+2−d ◦ [−n]

If we put T := O|AX , then we can reinterpret this as

SAX = T d−n−2 ◦ [n]
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Recall that LO had kernel given by [O⊠O→O∆]. We can compose this with the kernel for −⊗O(1)

which is O∆(1) to see that the kernel for T is given by K1 = [O(1)⊠O → O∆(1)], i.e. we have an

exact triangle K1→O(1)⊠O→O∆(1).

Our ultimate aim is to show that a suitable power of the Serre functor is just a shift functor, so we

need to understand the kernel for T i , i = 1,2, . . . ,. For this purpose, we need to convolute K1 with

itself multiple times.

Proposition 3.5 (Kernel of Serre functor of Kuznetsov component): The kernel K i1 fits into

a sequence

K i1→O(1)⊠Ωi−1(i − 1)→ ·· · → O(i − 1)⊠Ω(1)→O(i)⊠O→O∆(i)

Proof. We show this by induction.

Firstly, composing with a Fourier-Mukai transform preserves exact triangles, so the same holds

for the kernels. We can compose the triangle for K1 with O(1)⊠O,O∆(1) on the left and K1 on the

right respectively to get three exact triangles

(O(1)⊠O) ◦K1→ (O(1)⊠O) ◦ (O(1)⊠O)→ (O(1)⊠O) ◦O∆(1)

O∆(1) ◦K1→O∆(1) ◦ (O(1)⊠O)→O∆(1) ◦O∆(1)

K1 ◦K1→ (O(1)⊠O) ◦K1→O∆(1) ◦K1

We can compute some of these: for example, the middle convolution on the first row is given by

(O(1)⊠O) ◦ (O(1)⊠O) = π13∗
(
O(1)⊠O⊠O⊗O⊠O(1)⊠O

)
=

(
O(1)⊠O

)
⊗H•(O(1))

as pushing down is the same as cohomology on the fibers. This is the only computation that

involves any cohomology: the others are given by tensoring with the diagonal, which turns the

first two triangles into:

(O(1)⊠O) ◦K1→
(
O(1)⊠O

)
⊗H•(O(1))→O(1)⊠O(1)

O∆(1) ◦K1→O(2)⊠O→O∆(2)

Now recall the Euler sequence on Pn+1, which says that there is an exact triangle

Ω(1)→On+2→O(1)

Since the cohomology of O(1) is n+ 2-dimensional, we can read off from the first exact triangle

that (O(1)⊠O) ◦K1 ≃ O(1)⊠Ω(1). We can now plug this into the second object in the last triangle,

as well as replace the last object in the third triangle by the second triangle to get:

K1 ◦K1→O(1)⊠Ω(1)→O(2)⊠O→O∆(2)

Now, assume the statement holds for i (we have just shown it holds for i = 2). Then we can apply

− ◦ K1. We notice by the same argument that O∆(i) ◦ K1 = [O(i + 1) ⊠O → O∆(i + 1)] and also
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using cohomology on the fibers and the Euler sequence that
(
O(i)⊠O

)
◦K1 = O(i)⊠Ω1(1). What

we need to understand is the other parts
(
O(i − k)⊠Ωk(k)

)
◦K1. This can be done by applying(

O(i − k)⊠Ωk(k)
)
◦− to the triangle defining K1. What we get is the following:(

O(i − k)⊠Ωk(k)
)
◦K1→O(i − k)⊠O⊗H•(Ωk(k + 1))→O(i − k)⊠Ωk(k + 1)

Now we need to use a variant of the Euler sequence, [Arapura, Corollary 17.1.3]:

Ωk+1(k + 1)→O(n+2
k+1)→Ωk(k + 1)

This, together with a computation of the cohomology of Ωk(k + 1) having dimension
(n+2
k+1

)
(it has

only H0 using Bott vanishing etc.), tells us that
(
O(i − k) ⊠Ωk(k)

)
◦K1 = O(i − k) ⊠Ωk+1(k + 1).

This completes the induction, which is illustrated in the picture below, where the squiggly arrows

denote convolution with K1:

K i1 O(1)⊠Ωi−1(i − 1) . . . O(i)⊠O O∆(i)

K i+1
1 O(1)⊠Ωi(i) . . . O(1)⊠Ω(1) [O(i + 1)⊠O→O∆(i + 1)]

The main result

Theorem 3.6 (Shift functor): The functor T has T d = [2].

Proof. In the course of the proof, we write P = Pn+1. Firstly, let’s recall the Koszul resolution

of X in Pn+1 and X ×X ⊂ P × P. Since X is given by a section of O(d) and X ×X by a section of

O(d)⊠O⊕O⊠O(d), we have the following resolutions:

0→O(−d)→OP→ ι∗OX → 0

0→O(−d,−d)→O(−d,0)⊕O(0,−d)→OP×P→ (ι× ι)∗OX×X → 0

We wish to understand the derived pullback (ι×ι)∗O∆P . Instead, let us first consider (ι×ι)∗(ι×ι)∗O∆P ≃

(ι× ι)∗OX×X ⊗O∆P , by the projection formula. This derived tensor product is given by tensoring the

Koszul resolution above with the diagonal. The resulting complex is

O∆P(−2d)→O∆P(−d)⊕2→O∆P

The first map is injective, and this is just the sum of the two resolutions O∆P(−d)→O∆P →O∆X and

O∆P(−2d)→O∆P(−d)→O∆X (−d). We conclude that L−1 =H−1 = O∆X (−d),L0 =H0 = O∆X . Now we

note that ι is a closed embedding, hence exact and conservative, so we can ignore it.
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This now allows us to write down an exact triangle

O∆X (−d)[1] ≃H−1[1]→ (ι× ι)∗O∆P →H
0 ≃ O∆X

We can rotate and twist by d to get the exact triangle

(ι× ι)∗O∆P →O∆X (d)→O∆X [2] (3.1)

Now recall the Beilinson resolution of the diagonal, which we restrict to X ×X:

0→O(d −n− 1)⊠Ωn+1(n+ 1)→ ·· · → O⊠Ωd(d)

→O(1)⊠Ωd−1(d − 1)→ ·· · → O(d)⊠O→O∆

We splice it into the top bit, where all the O’s are non-positive, and the positive bit below, which is

just the kernel Kd , by 3.5. Let us call K ′d the complex which is Kd without the diagonal bit at the

end. Then we have an exact triangle

K ′d →O∆X (d)→ Kd

We now compare this with triangle 3.1, by using the natural map K ′d → (ι× ι)∗O∆P coming from

Beilinson’s resolution, and the identity map in the middle, which can be extended to a map

Kd →O∆X [2] by the axioms of triangulated categories:

K ′d O∆X (d) Kd

(ι× ι)∗O∆P O∆X (d) O∆X [2]

Finally, we compare the effect of taking these as Fourier-Mukai kernels. We know that ΦKd = T d

and ΦO∆[2] = [2] and we claim that they are isomorphic by the dotted arrow. To see this, we show

that the other vertical arrows induce isomorphisms on Fourier-Mukai transforms.

The middle bit is obvious, however to compare ΦK ′d
and Φ(ι×ι)∗O∆P

we simply look again into the

Beilinson resolution: we have that

[O(d −n− 1)⊠Ωn+1(n+ 1)→ ·· · → O⊠Ωd(d)→ K ′d] = (ι× ι)∗O∆P

However, for any Ei = O(d − i)⊠Ωi(i) with i = d,d + 1, . . . ,n+ 1, its Fourier-Mukai transform on

A ∈ AX vanishes, by using the projection formula, base change and the fact that AX is orthogonal

to O, . . . ,O(n+ 1− d):

ΦEi (A) = q∗(p
∗A⊗ p∗O(d − i)⊗ q∗Ωi(i)) = Ωi(i)⊗ q∗p∗A(d − i) = Ωi(i)⊗RHom(O(i − d),A) = 0

We conclude that ΦK ′d ≃ Φ(ι×ι)∗O∆P
and hence T d = [2].
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As an immediate corollary we get:

Corollary 3.7 (Kuznetsov): If 2d > n+ 1, then AX is a fractional Calabi-Yau category whose

Serre functor obeys Sd/cAX = [(n+ 2)(d − 2)/c], where c = gcd(d,n+ 2).

In the special case that X is a cubic fourfold, n = 4,d = 3 hence S = T −3 ◦ [4] = [2]. More

generally, whenever d|n+ 2, the component is Calabi-Yau.

3.4 Fundamental example: cubics containing a plane

We now study the case of cubic fourfolds containing a plane P ≃ P2. These form a divisor C8

in the moduli space of all cubic fourfolds of special importance, as we will see in the review of

Addington-Thomas. They also play a central role in Voisin’s proof of the global Torelli theorem.

Note that they do not belong on Hassett’s list of cubic fourfolds with associated K3 surfaces: in fact,

we will see that their Kuznetsov component is equivalent to D(S,α), the twisted derived category

of a K3 surface S relative to a Brauer class α ∈ H2(S,O∗S ). When the Brauer class vanishes, the

cubic fourfold is rational and there is a different surface T , P inside of X which places it in C8∩Cd
with d on Hassett’s list, which is consistent with the predictions about associated K3 surfaces and

rationality.

3.4.1 Geometric constructions

Consider P ⊂ X ⊂ P5 a cubic fourfold containing a plane P . The variety parametrizing 3-planes

containing P is also a plane, and X intersects such a 3 plane in P combined with a quadric Q, since

generically the intersection of X with a 3-plane should be degree 3.

More precisely, we can blowup P in P5 which resolves the rational map defined by the linear

system IP ⊗O(1) to a map defined by the complete linear system IE ⊗ τ∗O(1).

PNP /P5 ≃ E BlP P5

P P5 P2

τ
φ

By definition, this means that φ∗O(1) = IE ⊗ τ∗O(1).

If P = PV , V ⊕W = C6 and we choose coordinates so that V = V(z0, z1, z2), then the map P5 →

PW ≃ P2 is given by z 7→ [z0 : z1 : z2] since these are the linear forms vanishing on P . This is then

resolved by blowing up P and essentially projecting down from the P2 fiber in the projectivized

normal bundle, which is trivial:

E ≃ P ×P2 φ=π2−−−−−→ P2
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We can think of the blowup in this simplified setting as the set

BlP P5 = {p ∈ P5,q ∈ P2|piqj = pjqi ,0 ≤ i, j ≤ 2} ⊂ P5 ×P2

which comes equipped with two projection maps to P5 and P2 which are the blowup and resolution

maps, respectively. We can clearly see that over P2, this is a projective bundle by looking at the

affine cone over P5:

{a ∈ A6,q ∈ P2|aiqj = ajqi ,0 ≤ i, j ≤ 2} → P2

We can see that the coordinates a3, a4, a5 are unconstrained, so give us a copy of the trivial bundle

O⊕3. The other three coordinates give us precisely the tautological bundle:

O(−1) = {(a0, a1, a2) ∈ A3,q ∈ P2| (a0, a1, a1) ∈ q}

Hence, we conclude that

BlP P5 = P(O(−1)⊕O⊕3)

However, this isomorphism is slightly non-canonical: a coordinate-free alternative is to put

F = φ∗τ∗O(1) which gives BlP P5 = PF ∗.

Now, we restrict to X: the blowup X̃ := BlPX is the strict transform of X in BlP P5. If F is the

defining function of X, which is a cubic, we expect generically the fiber of X̃→ P2 to be a quadric,

since the blowup only gives a linear condition. The reason for this is that τ∗F ∈ H0(τ∗O(3)⊗IE)

since F vanishes on P and hence X̃ is defined as the zero locus of a section of the line bundle

L := τ∗O(3)⊗IE . To understand the fibers of X̃ we push this line bundle down to P2:

φ∗(τ
∗O(3)⊗IE) = φ∗τ

∗O(2)⊗O(1)

Pushing down means taking cohomology on the fibers, hence φ∗τ∗O(2) = φ∗Oφ(2) = Sym2F

essentially since H0(O(2)) = Sym2H0(O(1)) (see 1.56).

All in all, we see that

φ∗L = Sym2F ⊗O(1) ⊂Hom(F ∗,F ⊗O(1))

We see that the fiber over q ∈ P2 is the residual quadric defined by the quadratic form q correspond-

ing to F which is a section of Sym2F . This quadric is smooth, unless we are in the discriminant

locus where det(q)=0. This is a section of the bundle Hom(det(F ∗),det(F ⊗O(1)) ≃ O(6) since

detF = 1 and detF ⊗O(1) = det(O(2)⊕O(1)⊕3) = 5. So the discriminant locus is a sextic curve C!

Let us summarize what we have done so far:

Proposition 3.8 (Blowup quadric fibration): The blowup of a cubic fourfold X̃ at a plane

projects to P2 with quadric fibers, namely the residual quadrics complementary to P in the

intersection between the 3-plane spanned by P and q with X. They degenerate to singular ones

over a sextic curve C.
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Now, a generic quadric is isomorphic to P1 ×P1 and has exactly two rulings, parametrized by the

connected components of the Fano variety of lines

F (P1 ×P1) = P1
∐

P1

A singular quadric is a cone, so has exactly one ruling:

F (Q) = P1

If we define S to be the space of rulings on the fibers, we see that it is a double cover of P2 branched

along the sextic curve. Moreover, the relative Fano variety parametrizing lines in the fibers is a P1

bundle over this:

F̃
πS−−→ S

π−→ P2

In other words, for every y ∈ P2, the fiber of F̃ is equal to F (Qy), the Fano variety of lines in the

residual quadric corresponding to y.

In fact, this S is a K3 surface: since it is a double cover of P2, it has h0,1(S) = h0,1(P2) = 0 and its

canonical bundle is given by

KS = π∗(KP2 +
1
2
C) = π∗(−3H +

1
2

6H) = 0

The Fano varieties carry a universal P1-bundle

P = {(x,L) ∈ X ×F |x ∈ L} ⊂ X ×F

and similarly a pullback to F̃ given by P̃ = {x,L|x ∈ L} ⊂ X × F̃ , fitting into a diagram:

P̃

F̃ P X̃

F X

Remark 3.9 (Brauer-Severi varieties): We have seen that F̃ → S is a P1 bundle. There is a

cohomological obstruction α ∈H2(S,O×S ) to this being a projectivized vector bundle, which

can be seen by locally trivializing and trying to glue over an open cover. However, there is

an α-twisted vector bundle E such that F̃ = PE and a sheaf of Azumaya algebras B0 = EndE

whose Brauer class is α. Even more is true: the pushforward to P2 defined as π∗B0 = C0 is

the sheaf of even Clifford algebras corresponding to (F ∗,q):

C0 = O⊕
∧2
F ∗(−1)⊕

∧4
F ∗(−2)

whose center Z realizes S = SpecZ as a relative Spec of a sheaf of algebras. For more on

this, consult [Ber15]. In fact, Kuznetsov [Kuz10] shows that

D(P2,B0) ≃ D(S,α)
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In the next section, we will see how the above correspondence allows us to define a Fourier-Mukai

transform ΦI (1) :D(F̃ )→D(X) which sends a twisted subcategory D(S,α) isomorphically to the

Kuznetsov component.

3.4.2 Twisted sheaves on the associated K3 surface

We have seen that to every cubic fourfold containing a plane, we can associate some K3 surface by

blowing up the plane and realizing S as the variety of rulings on the fibers of the quadric fibration

X̃→ P2. Given that the Kuznetsov component looks like the derived category of a K3 surface, it

is natural to conjecture that these two are related. In this section, we review two approaches to

proving the following:

Proposition 3.10 (Kuznetsov): There is an equivalence between the derived category of twisted

sheaves on S and the Kuznetsov component:

D(S,α) ≃ AX

Proof 1. The original approach is due to Kuznetsov [Kuz10]. The point is that on the one hand, the

blowup formula 1.60 shows that

D(X̃) ≃ ⟨D(P ),D(X)⟩

This has 6 exceptional objects and the category AX . On the other hand, Kuznetsov’s work on

quadric fibrations shows that there is another semiorthogonal decomposition

D(X̃) = ⟨D(S,α),D(P ),D(P )⊗O(1)⟩

This also has 6 exceptional objects, together with the category D(S,α).

A sequence of mutations then identifies the two categories in question.

Proof 2. A second approach is found in [Huy23, §7] by using a Fourier-Mukai kernel.

Step 1: We first choose a kernel and define a functor witnessing the desired equivalence.

The universal line P̃ ⊂ X × F̃ has an ideal sheaf I and we consider the Fourier-Mukai transform

associated to the correspondence:

X × F̃

X F̃

πX πF̃

ΦI (1) :D(X)→D(F̃ )

Now, a theorem of Bernardara [Ber09] extends the projective bundle formula to Brauer-Severi

varieties and we can apply it to the P1-bundle F̃
πS−−→ S hence have a semiorthogonal decomposition

D(F̃ ) = ⟨D(S,α),D(S)⟩
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TheD(S) is included via the projection π∗S to S and the twistedD(S,α) is included via π∗S⊗OπS (−1):

we have to tensor by a relative twisted OπS (−1) so as to untwist and land in the honest derived

category. We can consider the adjoint Ψ of Φ and compose it with the inclusion D(S,α) ↪→D(F̃ )

to get

Ψ ′ :D(S,α)→D(X)

The claim is that this lands in the Kuznetsov component and is a full and faithful functor. The fact

that both are indecomposable Calabi-Yau 2 categories then completes the proof.

Step 2: We show that imΨ ′ ⊂ AX .

We need that Ψ ′(E) ∈ AX = ⟨O,O(1),O(2)⟩⊥ = ⊥(⟨O,O(1),O(2)⟩ ⊗O(−3)) by Serre duality. In other

words, by adjointness we want

Hom(Ψ (E),O(−i)) = 0 ⇐⇒ Hom(E,ΦO(−i)) = 0 ⇐⇒ ΦO(−i) ∈ D(S,α)⊥, i = 1,2,3

The ideal sheaf sequence

0→I →OX×F̃ →OP̃ → 0

implies that we have a triangle of FM functors

ΦI → ΦOX×F̃ → ΦOP̃

Applying this to OX(−1) we see that ΦOX×F̃ (1)O(−1) = ΦOX×F̃ (OX) = O by base change on the

product since H•(X,OX) = C and similarly ΦOP̃ (1)(OX(−1)) = ΦOP̃ (OX) = O since P̃ → F̃ is a P1

bundle. The two are isomorphic, and hence Φ(O(−1)) = 0 as the cone of an isomorphism.

Similarly, applying it to OX(−2), we first see that ΦOX×F̃ (OX(−1)) = 0 since this is doing cohomology

on the fibersH•(X,OX(−1)) =H•(X,ωX⊗OX(2)) = 0 by Bott vanishing. Moreover, ΦOP̃ (OX(−1)) = 0

since this is cohomology on the P1 fibers, and H•(P1,O(−1)) = 0.

Finally, we need to consider OX(−3). We still have Bott vanishing for X i.e. ΦOX×F̃ (OX(−2)) = 0

since H•(X,OX(−2)) =H•(X,ωX ⊗OX(1)) = 0. However, the cohomology of O(−2) on the P1 fibers

is nonzero, so we only have that ΦO(−3) ≃ ΦOP̃ (O(−2))[−1]. Explicitly, by Remark 1.56, we have

ΦOP̃ (O(−2)) = πF̃ ∗OπF̃ (−2) = OF̃ (−1)[−1]

The desired vanishing is thus equivalent via Serre duality to

0 = Hom(E,ΦO(−3)) = Hom(E,OF̃ (−1)[−2]) ⇐⇒ 0 = Hom(OF̃ (−1),E ⊗ωF̃ )

We only need to show this for skyscrapers. But they are embedded via π∗S ⊗OπS (−1) so a skyscraper

Ox ∈ D(S,α) corresponds to OFx (−1), and so we are reduced to showing

Hom(OF̃ (−1),OFx (−1)⊗ωF̃ ) ≃H•(Fx,OFx (−1)⊗OFx (−2)⊗OF̃ (−1)|Fx ) =H•(P1,O(−1)) = 0
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since the embedding P1 ≃ Fx ⊂ F̃ is of degree 2, i.e. it pulls back the Plucker polarization coming

from the tautological line O(1) on P
∧2C6 to O(2) 1.

Step 3: The final step in the proof consists of showing that Ψ ′ is fully faithful, which requires the

use of the criterion by Bondal-Orlov 1.36.

Firstly, we identify the kernel for Ψ ′. By 1.34, we know that is must be I (1)∨ ⊗π∗XωX[3]. The

generation criterion then requires to check what happens on skyscrapers Os, s ∈ S. Explicitly,

Ψ ′Os = πX ∗(I (1)∨ ⊗ωX ⊠O⊗π∗
F̃
Os)[3]

The way we’ve set things up, the pullup is twisted via the way D(S,α) includes into D(F̃ ), namely:

π∗
F̃
Os = OFs (−1) where Fs ≃ P1 is the fiber over s in the P1 bundle F̃ → S. Hence, the object in

question is

Ψ ′Os = πX ∗(Is(1)∨ ⊗ (ωF̃ ⊗OFs (−1))⊠OX )[3]

Here, Is is the ideal sheaf of the subvariety P̃s ⊂ X ×Fs, since tensoring with the skyscraper has

made everything supported on a fiber. Under the projection πs : Fs ×X→ X, the relative canonical

sheaf is just ωF̃ ⊠OX . Hence, we can apply Grothendieck-Verdier duality 1.30:

πs∗(Is(1)∨ ⊗ωπ ⊗OFs (−1)⊠OX )[3] ≃ πs∗Hom(Is ⊗O⊠OX(1),ωπ ⊗OFs (−1)⊠OX )[3] ≃

πs∗Hom(Is ⊗OFs (1)⊠OX(1),ωπ)[3] ≃Hom((πs∗)Is ⊗OFs (1)⊠OX(1),O[2]) ≃

(πs∗(Is ⊗OFs (1)⊠O))∨ ⊗OX(−1)[2]

We thus need to understand πs∗(Is ⊗OFs (1)⊠O). This is really the Fourier-Mukai transform of

OFs (1) with kernel Is, which fits into the triangle

Is→OX×Fs →OP̃s

and hence we have a triangle

ΦIs (OFs (1))→ ΦOX×Fs (OFs (1))→ ΦOP̃s
(OFs (1))

Hence, we see that

(Ψ ′Os)∨ ⊗OX(−1)[2] ≃ πs∗(Is ⊗OFs (1)⊠O) ≃ ker[H0(X,OFs (1))⊗OX →OQ(1)] := Ks

where Q is the residual quadric in X corresponding to s.

The only thing left is to check the Bondal-Orlov criterion on Ks, since

Exti(Ψ ′Os,Ψ ′Ot) ≃ Exti(Ks,Kt)

The computation of these Ext groups is done in [Huy23, §7, Lemma 3.7]. One can show that

Ext0(Ks,Ks) = C and moreover Exti(Ks,Ks) vanishes for i < 0 since this is a sheaf and the case i > 2

follows by Serre duality.

1This is shown in [Huy23, §1]
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When s , t, one needs to check vanishing of Ext0(Ks,Kt) which then implies by Serre duality

vanishing of Ext2(Ks,Kt). The final step, to check Ext1(Ks,Kt) = 0, is given by a computation of

the Euler characteristic: we know that since H0(X,OFs (1)) = C2 then Ks = 2OX − OQ(1) in the

Grothendieck ring. Therefore,

χ(Ks,Kt) = 4χ(OX ,OX )︸        ︷︷        ︸
4

−2χ(OX ,OQ(1))︸            ︷︷            ︸
4

+2χ(OQ(1),OX )︸            ︷︷            ︸
4

−χ(OQ,OQ)︸      ︷︷      ︸
Q·Q=4

= 0

Remark 3.11 (Self-intersection via Euler characteristic): We have in general for a half-

dimensional subvariety Q ⊂ X that

χ(OQ,OQ) = (−1)dimQQ ·Q

The proof uses Hirzebruch-Riemann-Roch:

If E is the bundle cutting out Q such that E|Q =NQ, so ctop(E) = [Q] then we have that

χ(OQ,OQ) = χ(O∨Q ⊗
LOQ) = χ(

⊕
i,j

∧i
E∨ ⊗

∧j
E) =

=
∑
i,j

(−1)i+jχ(
∧i
E∨ ⊗

∧j
E) =

∫
X

ch

∑
i,j

(−1)i+j
∧i
E∨ ⊗

∧j
E

 td(X) =

=
∫
X

ch

∑
i

(−1)i
∧i
E∨

ch

∑
j

(−1)j
∧j
E

 td(X) =
∫
X

ctop(E)

td(E)

ctop(E∨)

td(E∨)
td(X)

=
∫
Q

ctop(N ∨)

td(N ∨)
td(Q) = (−1)k

∫
Q
ctop(N )td(TQ −N ∨) =

= (−1)k
∫
Q
ctop(N ) = (−1)kQ ·Q

The last bit follows since the rank ofN is the same as the dimension of Q, and hence when

integrating only td0 = 1 survives.

We use the multiplicative and additive properties of the Chern character, as well as the fact

that for any bundle F we have

r∑
i=0

(−1)ich(
∧i
F ∨) =

cr (F )
td(F )

and an instance of Poincare duality and the normal bundle sequence which tells us that

td(X) = td(N )td(Q) on Q.

Varying in a pencil

This is an aside remark, which explains that one can use Homological Projective Duality and study

the problem above in a P1-family. This was done in [CalTh15] and produces a derived equivalence

between two Calabi-Yau threefolds.
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Firstly, suppose we have a pencil of cubic fourfolds. This produces universal cubic hypersurface

H→ P1

whose fiber over t is the associated cubic fourfold to t. This also has a Kuznetsov component and

an SOD

D(H) = ⟨AH,π∗DP1(i,0); i = 3,4,5⟩

Homological Projective Duality prescribes an equivalence

AH ≃ D(X )

where X is the base locus of the linear system of the pencil.

Consider, in particular, a pencil of cubics containing our fixed plane P . This is equivalent to

choosing two sections s0, s∞ of the linear system defining X̃ which is IE ⊗ τ∗O(3). The base locus

X = {s0 = s∞ = 0} of this sub-linear system is a (3,3) complete intersection in P5, which is a

Calabi-Yau threefold.

Then, in fact, the universal hypersurface is given by

H = BlX (BlP P5) ⊂ BlP P5 ×P1→ P2 ×P1

which we can think of as a quadric fibration over PW ×P1. Work of Kuznetsov then shows that

D(X ) ≃ D(P2 ×P1,C0)

where C0 is the associated Azumaya algebra to the quadric fibration.

Before, we had that

D(P2,B0) ≃ D(S,α)

for the K3 surface S, but now we can study it in families to produce a P1-family of K3 surfaces

Y , which is also a Calabi-Yau threefold, obtained similarly as a Stein factorization (modulo some

details on the singularities). Then we have that

D(P2 ×P1,C0) ≃ D(Y ,α)

by work of Kuznetsov, which allows us to conclude that

D(X ) ≃ D(Y ,α)

3.5 Connecting the Hodge theoretic and derived viewpoints: the paper of

Addington-Thomas

So far we have seen a countable union of divisors in the moduli space of cubic fourfolds with a

distinguished divisor C8 consisting of the cubics containing a plane, which is crucial to the proof

of the global Torelli theorem.
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Now, by work of Hassett, the special cubic fourfolds in these divisors are the conjecturally rational

ones and Kuznetsov has conjectured that their Kuznetsov component is equivalent to the derived

category of a K3 surface. Thus there are two viewpoints2:



Hassett’s Hodge theoretic viewpoint

Cd nonempty iff (∗)

Cd associated to K3 surface iff (∗∗)

Conjecture: X rational precisely

when it has an associated K3 surface


vs



Kuznetsov’s derived viewpoint

AX always a Calabi-Yau 2 category

Conjecture :

X rational iff ∃ K3 surface D(S) ≃ AX


The conditions (∗), (∗∗) are the ones from 3.4. Note that 8 is not in the list of special cubic fourfolds,

and we saw that for X ∈ C8, AX ≃ D(S,α) is a twisted K3 category: essentially, H2
prim(S,Z) does not

embed in H4
prim(X,Z) when a nontrivial Brauer class is present, because one has to invert 2.

However, α is trivial precisely when X ∈ C8 ∩Cd for some other d, i.e. there is some other surface

T , P contained in it. This is consistent with both predictions of Hassett and Kuznetsov.

Addington-Thomas show that in fact all the other Ci meet C8 nontrivially. They show that essen-

tially the two viewpoints of Hassett and Kuznetsov are equivalent, in the following steps:

Kuznetsov implies Hassett: Firstly, using a lot of lattice theory, they reformulate Hassett’s

condition (∗∗) using a more natural K-theoretic one: it is in fact equivalent to there being two

classes a,b ∈ Ktop(AX ) which are point-like and line-bundle-like:

⟨a,a⟩ = 0,⟨a,b⟩ = 1,⟨b,b⟩ = 2

One should think of a = Opt ,b = OS . This shows that Kuznetsov’s condition implies the Hassett

special condition.

Hassett implies Kuznetsov: To do the converse direction of Hassett implies Kuznetsov, one

proceeds via deformation theory. Addington and Thomas show that starting from X ∈ C8 ∩Cd , one

can deform the Fourier-Mukai kernel witnessing AX ≃ D(S) away from C8.

More precisely, given such an X, Kuznetsov tells us that

AX ≃ D(S)

since the Brauer class vanishes. However, this equivalence is the one relevant to C8, namely it is

the one which should deform in the direction of cubics containing a plane. We want to instead

deform in the other direction. However, a theorem of Mukai-Orlov shows there is a moduli space

M of stable objects of class a, which is fine by the assumption that b exists. Classical results of

Mukai imply thatM is a K3 surface as well and in fact there is a universal object onM× S which

produces a Fourier-Mukai equivalence

D(S) ≃ D(M)

2Hassett never explicitly conjectures that rationality is equivalent to the cubic being special
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So we can work withM instead. The technical core of this step is showing that the Fourier-Mukai

kernel U of the equivalence

AX ≃ D(M)

deforms as X deforms through Cd .

If we think of deforming by beginning with the identity kernel U = O∆, then deforming to

first order is controlled its action on cohomology and in particular by a class in the Hochschild

deformation space

HH2(M) = Ext2(O∆,O∆) ≃H0(M,
∧2

TM)⊕H1(M,TM)⊕H2(M,OM)

and can be explicitly described. Work of [HuyTh07] identifies this obstruction class as

(κX ,κM) ◦At(U ) ∈ Ext2(U,U )

where κM ∈H1(M,TM) defines a deformation ofM and similarly κX = ΦUκS . [AdTh14] show that

this obstruction vanishes and then use T 1 lifting methods to extend the first-order deformations to

all orders, at least on a Zariski dense subset of the Hassett divisor Cd . Recent work of [LiPerZh22],

[Bayer21] show that one can extend to the whole of Cd , concluding the Hassett implies Kuznetsov

direction.
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4 Derived categories of singularities and matrix factorizations

4.1 Derived categories of singularities

When considering smooth projective varieties, we made use of the existence of bounded locally

free resolutions (Hilbert’s syszygy theorem), e.g. in defining derived pullbacks and tensor products.

If we want to look at singular varieties, the failure of this property is an important point.

Theorem 4.1 (Serre): A commutative local ring A is regular iff it has finite global dimension,

i.e. there is a global bound on the length of projective resolutions of A-modules.

Motivated by this, we are led to the following definition due to Orlov.

Definition 4.2: Suppose X is a quasi-projective variety. A complex of sheaves on X is perfect

if it is quasi-isomorphic to a bounded complex of finite type locally free sheaves. This gives a

triangulated subcategory Perf(X) ⊆Db(X), by the construction of cones in terms of direct sums.

The derived category of singularities is the quotient DSg(X)BDb(X)/Perf(X).

Recall from Definition 1.5 that this quotient is given by inverting all morphisms in Db(X) whose

cones are perfect complexes.

Remark 4.3: As noted above, for a smooth variety all bounded complexes of coherent sheaves

are perfect, so Perf(X) =Db(X) and DSg(X) = 0.

Remark 4.4: The underived category of perfect complexes Perf(X) ⊆ Kb(CohX) inherits a

differential graded structure from Kb(CohX). The homotopy category H0 Perf(X) given

by taking 0th cohomology of Hom•(−,−) for morphisms is equivalent to Perf(X), as in

Theorem 1.7. In the smooth case, where Perf(X) =Db(X), this gives a “dg-enhancement” of

Db(X). The richer structure of a dg-category can be nicer to work with than the triangulated

category Db(X), e.g. giving functorial cones.

Proposition 4.5: Any object in DSg(X) is isomorphic to the image of some shifted sheaf.

Proof. We may take a bounded above projective resolution of an object in DSg(X)

· · · P a−1 P a · · · P b

· · · 0 Aa · · · Ab,
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and then the truncation

· · · 0 P a−1/P a−2 P a · · · P b

· · · 0 Aa · · · Ab

is also a quasi-isomorphism. This truncated resolution is an extension of P a−1/P a−2[1− a] by the

perfect complex P a→ ·· · → P b, and so in DSg(X) is isomorphic to P a−1/P a−2[1− a].

The theory of morphisms in DSg(X) is particularly nice when X is Gorenstein, where we have

a bounded derived dual RHom(−,OX) on Db(X) satisfying RHom(RHom(F ,OX),OX) ≃ F . This

holds for local complete intersections in smooth varieties.

Remark 4.6: When X is Gorenstein, the shifted sheaf F in Proposition 4.5 may be taken

to satisfy Exti(F ,OX) = 0 for i > 0, since RHom(A•,OX) is bounded and may be assumed

within the truncated range.

Proposition 4.7 ([Orl04, Lemma 1.20]): Suppose X is Gorenstein. If F is a coherent sheaf

which is perfect as a complex, and Exti(F ,OX ) = 0 for i > 0, then F is locally free.

Proposition 4.8 ([Orl04, Prop 1.21]): Suppose X is Gorenstein. If F ,G ∈ Coh(X) satisfy

Exti(F ,OX ) = 0 for i > 0 and Exti(P ,G) = 0 for i > N and any locally free sheaf P , then

HomDSg(X)(F ,G[N ]) ≃HomDb(X)(F ,G[N ])/R

where R is the subspace of maps factoring through a locally free sheaf.

Example 4.9: Consider a non-reduced point X = SpecC[t]/tn. By the structure theorem

for finite type modules over a PID, coherent sheaves on X are direct sums of the modules

C[t]/ti for i = 0, . . . ,n. Moreover, by taking Smith normal forms any complex is a direct sum

of shifts of these modules. Only i = n gives a projective module, and so DSg(X) is generated

by C[t]/t,C[t]/t2, . . . ,C[t]/tn−1. Note that these all have infinite periodic free resolutions

as C[t]/tn-modules, corresponding to the factorizations tn = titn−i . The corresponding

extension

0→ C[t]/tn−i
ti−→ C[t]/tn→ C[t]/ti → 0

shows that C[t]/ti is the shift of C[t]/tn−i by 1. In particular the shift functor is an involution,

which we will see holds more generally in 4.3. By Proposition 4.8 we can see for example

that the map C[t]/ti
tk−−→ C[t]/tj gives zero in DSg(X) if k ≥ n− i.

One might hope that DSg(X) only depends on the local geometry of X near its singular locus,

and in fact this is true; DSg(U ) ≃DSg(X) for a formal neighbourhood U of the singular locus. See

[Orl04, Prop 1.14] and [Ship12, §6].
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4.2 Matrix factorizations

Consider the cone Z = {xy = z2} ⊂ A3. Looking at the structure sheaf of the line L = {x = z = 0} ⊂ Z,

we are led to a periodic projective resolution

· · · → O2
Z


y −z

−z x


−−−−−−−−−−→O2

Z


x z

z y


−−−−−−−→O2

Z


y −z

−z x


−−−−−−−−−−→O2

Z

(
x z

)
−−−−−−−→OL→ 0, (4.1)

arising from a factorization of xy − z2 into matrices: y −z

−z x


x z

z y

 = (xy − z2)I =

x z

z y


 y −z

−z x

 .
Viewed over A3, this is a kind of twisted chain complex, satisfying d2 = xy − z2 instead of d2 = 0.

Definition 4.10: Suppose X is a smooth quasi-projective variety, and W : X→ A1 is a regular

function. A matrix factorization of W on X is a pair of vector bundles E0,E1 on X with maps

E0 E1d0

d1

satisfying d1d0 =W · idE0 , d0d1 =W · idE1 .

Remark 4.11: The differential d1 is a null-homotopy of the multiplication by W map on the

chain complex E0→E1, and similar for d0. Hence the sheaves kerdi , cokerdi are supported

on {W = 0} ⊂ X. When W is not a zero-divisor we get kerdi = 0, but the cokernels are more

interesting; see 4.3.

In other words, these are Z2-graded twisted chain complexes with d2 = W . Given two matrix

factorizations E•,F • we obtain a genuine Z2-graded complex Hom•(E•,F •) with differential

f 7→ d ◦ f − (−1)|f |f ◦ d squaring to W −W = 0. This gives a differential Z2-graded category, and as

seen earlier we then have a triangulated homotopy category.

Definition 4.12: Taking the 0th cohomology of the complex Hom•(E•,F •) for morphisms gives

a triangulated category MF(X,W ) of matrix factorizations.

Remark 4.13: IfW = 0 we recover a weaker version of Perf(X) =Db(X) with only Z2-grading,

having a natural forgetful functor Db(X)→MF(X,0).

The collapse from Z-graded chain complexes when d2 = 0 to only having the Z2-grading when

d2 =W is somewhat unfortunate, and one might prefer to work instead with Z-graded complexes

where W somehow has degree 2. This leads to the notion of graded matrix factorizations, and an

important result due to Orlov relating matrix factorizations of a homogeneous polynomial and the

derived category of the corresponding projective variety [Orl09].
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Example 4.14: Suppose X = A2, with W = xy. The obvious factorization of W gives an object

K =
(
OX OX

x

y

)
∈MF(X,W ).

Note that

Hom•(K,K) =


O2
X O2

X


x −x

−y y



y x

y x




,

with cohomology

H0 Hom(K,K) = {(f ,g) : f = g}/⟨(x,x), (y,y)⟩ = C · (1,1),

H1 Hom(K,K) = {(f ,g) : yf + xg = 0}/⟨(x,−y)⟩ = 0,

so K is an exceptional object. In fact ⟨K⟩⊥ = 0, so MF(X,W ) ≃ Db(pt) is generated by K .

This is the most basic example of Knörrer periodicity, which we will see in 4.4.

Remark 4.15: Matrix factorizations first arose in commutative algebra, relating to maximal

Cohen–Macaulay modules [Eis80]. In the geometric setting of derived categories they are a

natural object of study, e.g. via minimal resolutions, and motivated by Orlov’s theorem. In

the context of mirror symmetry, (graded) matrix factorizations arise as the conjectural (due

to Kontsevich) category of B-branes on a Landau–Ginzburg model (X,W ), generalizing the

case W = 0 which should give Db(X). See [Orl09], [Seg11].

4.3 Comparing categories of singularities and matrix factorizations

Suppose Y = {W = 0} ⊂ X is a Cartier divisor, i.e. W is not a zero-divisor. We now describe how

to obtain a periodic resolution from a matrix factorization, as in (4.1), by resolving the cokernel

E0→E1→ K → 0. Note that K is supported on Y , since it is annhilated by W :

K K

E1 E1

E0

W

W

d1
d0

0

Restricting the exact sequence to Y , we then have

0→ d1E1/WE1→E0/WE0 d0 |Y−−−−→ E1/WE1→ K → 0.

Here the kernel of d0|Y is the image of d1 since W = d1d0 and we can cancel W . Repeating the

same argument for d1|Y , we then get a locally free resolution of K in Coh(Y ):

· · · → E0/WE0→E1/WE1→E0/WE0→E1/WE1→ K → 0.
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Remark 4.16: Recall that maps of the cokernel K correspond to chain maps of E0 → E1

modulo homotopy. Such chain maps automatically also respect the differential E1→ E0,

by applying d1 to the chain map condition and cancelling W . Homotopies of these chain

maps are a special case of homotopies of the maps of matrix factorizations.

Proposition 4.17: Associating K ∈ Coh(Y ) to the matrix factorization E• defines a functor

R : MF(X,W )→DSg(Y ) which is an exact equivalence.

Remark 4.18: We could define a similar functor by taking the cokernel of d1 instead of d0.

These give distinct objects of Db(Y ) (consider Example 4.14), but both are given by the

same periodic locally free resolution up to a shift and an appended perfect complex, so the

results in DSg(Y ) only differ by a shift.

Proof. A map of matrix factorizations E•→F • is null-homotopic iff it factors through

F 0 ⊕F 1 F 1 ⊕F 0,


d0 0

1 −d1



d1 0

1 −d0


which has cokernel

F 1 ⊕F 0/d1F 1

⟨d0x⊕ x : x ∈ F 0⟩
≃ F 1/WF 1

since the injection d0 : F 0 → F 1 induces an injection d0 : F 0/d1F 1 → F 1/d0d1F 1 = F 1/WF 1.

This is the restriction of the locally free sheaf F 1 to Y , and hence gives zero inDSg(Y ), so R is a well-

defined functor which naturally respects the triangulated structures. It is full by Proposition 4.8

and Remark 4.16.

Claim: If R(E•) = 0 in DSg(Y ), then E• = 0 in MF(X,W ).

Proof of claim. If K is a perfect complex on Y , then in fact K is locally free over Y by Proposition 4.7.

Then we have a section Y → E1|Y of the short exact sequence 0→ E0|Y → E1|Y → K → 0, which

gives a factorization of the identity on E• by Remark 4.16:

E0 E1 K

E1 E1 E1|Y

E0 E1 K.

d0

d1

W

d1
1

1

d0

d1

Since E1 1←− E1 is acyclic, the middle object is zero in MF(X,W ).
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With this claim it is a formal consequence that R is faithful; if an exact triangle E•
f
−→ F •

g
−→ G• has

R(f ) = 0, then R(g) is an isomorphism and has a retraction of the form R(r) since R is full. Now

R(rg) = 1 implies rf is an isomorphism, since the cone must be zero, so g is monic and f = 0.

To show essential surjectivity, by Remark 4.6 it suffices to consider a sheaf F supported on Y with

ExtiY (F ,OY ) = 0 for i > 0. Take a surjection E1→F with E1 a vector bundle on X.

Claim: The sheaf E0 = ker(E1→F ) is a vector bundle.

Proof of claim. This can be checked on stalks by showing ExtiX(E0,Opt) = 0 for i > 0 and all

points in X, and from the short exact sequence 0→ E0 → E1 → F → 0 it suffices to show that

ExtiX(F ,Opt) = 0 for i > 1. Since ExtiY (F ,OY ) = 0 for i > 0, we have a locally free right resolution

of F on Y by resolving F ∨ and dualizing. From the Grothendieck spectral sequence, it suffices

to show that ExtiX(Q,Opt) = 0 for i > 1 when Q is a locally free sheaf on Y . This follows from

RHomX(Q,Opt) = RHomY (Lj∗j∗Q,Opt), where j : Y ↪→ X is the inclusion, since Lj∗j∗Q fits into an

exact triangle Q[1]→ Lj∗j∗Q→Q as in [Huy, Cor 11.4].

Then multiplication by W is null-homotopic on the complex E0→E1, since it gives zero on F , and

the homotopy E1→E0 makes E• into a matrix factorization with cokernel F as required.

Remark 4.19: As the shift functor on MF(X,W ) is clearly 2-periodic, it follows that the shift

functor on DSg(Y ) is also 2-periodic, which is not immediately obvious.

4.4 Knörrer periodicity

Generalizing the example of MF(A2,xy), given a matrix factorization of a functionW =MN =NM,

we can produce a factorization of W + xy as follows:M x

−y N


N −x

y M

 =W + xy =

N −x

y M


M x

−y N

 .

Theorem 4.20 (Knörrer periodicity): MF(X ×A2,W + xy) ≃MF(X,W ) by this construction.

Example 4.21: Consider again the cone Z = {z2 + xy = 0} ⊂ A3. Knörrer periodicity gives

DSg(Z) ≃ DSg(SpecC[z]/z2), which is generated by C[z]/z as in Example 4.9. What is the

image of this generator in DSg(Z)? The corresponding matrix factorization is z2 = z · z,

producing  z x

−y z


z −x

y z

 = z2 + xy =

z −x

y z


 z x

−y z

 ,
so the image in DSg(Z) is the cokernel sheaf O2/⟨(z,y), (−x,z)⟩ ≃ O{z=x=0} from the short

exact sequence O2/⟨(z,y), (−x,z)⟩
(z x)
−−−−→OZ →O{z=x=0}→ 0, as in (4.1).
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In terms of derived categories of singularities, we can formulate a more general statement. Suppose

E is a vector bundle on X of rank r + 1, with a section s cutting out Y ⊂ X as a regular embedding.

The section s induces by linearity a section of OPE∨(1), cutting out Ỹ ⊂ PE∨. By adjunction

E|Y =NY /X , and we get an inclusion i : PN ∨Y /X ↪→ Ỹ . Label the maps as follows.

N B PN ∨Y /X Ỹ PE∨

Y X

q

i j

p
π

Theorem 4.22 ([Orl06, Thm 2.1]): The Fourier–Mukai transform ΦZ = Ri∗q∗ : Db(Y ) →

Db(Ỹ ) induces an equivalence DSg(Y ) ≃DSg(Ỹ ).

Example 4.23: Suppose we have two functions f ,g : X→ A1, with D = {g = 0} ⊂ X smooth.

As a section of the trivial bundle O2
X , this gives Y = {f = g = 0} ⊂ D and Ỹ = {f + tg = 0} ⊂

X × P1 where t is a coordinate on P1. Then DSg(Y ) ≃ DSg(Ỹ ) implies MF(X × P1, f + tg) ≃

MF(D,f ). Restricting f + tg to X × {∞} gives g, so since D is smooth and DSg only depends

on a neighbourhood of the singular locus we actually have MF(X ×A1
t , f + tg) ≃MF(D,f ).

From this we can recover the original Knörrer periodicity by taking X = X ′ ×A1
s and g = s.

Proof. We reduce to the claim that there is a semi-orthogonal decomposition

Db(Ỹ ) = ⟨ΦZDb(Y ),Lp∗Db(X)⊗Op(1), . . . ,Lp∗Db(X)⊗Op(r)⟩,

where the admissible subcategories are equivalent to Db(Y ) and Db(X), i.e. the functors ΦZ and

Lp∗ are fully faithful.

It is a formal consequence that this gives a semi-orthogonal decomposition of the singularity

categories

DSg(Ỹ ) = ⟨ΦZDSg(Y ),Lp∗DSg(X)⊗Op(1), . . . ,Lp∗DSg(X)⊗Op(r)⟩,

essentially because we can define DSg(−) intrinsically in terms of the triangulated category Db(−),

by identifying Perf(−) as those objects with bounded Ext groups. Since X is smooth we have

DSg(X) = 0, and so it follows that DSg(Ỹ ) is equivalent to DSg(Y ) via ΦZ .

We now prove the claim.

• Lp∗ is fully faithful and the terms involving Db(X) are orthogonal by the same reasoning as

in Proposition 1.55; we still have Rp∗OỸ = OX from the Koszul resolution, as Rπ∗Oπ(−1) = 0.

• To show that ΦZ is fully faithful, first note that q∗ is fully faithful (part of the projective

bundle formula), so Rq∗q∗ ≃ 1. Hence to get cone(F → ΦR
ZΦZF ) = 0, where ΦR

Z is the right

adjoint Rq∗i!, it is enough to show that C B cone(q∗F → i!Ri∗q∗F ) maps to zero under Rq∗.
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Now

Ri∗i
!Ri∗q

∗F ≃ Ri∗(q
∗F ⊗ωN/Ỹ ⊗ i∗Ri∗ON )[−r]

≃ Ri∗(q
∗F ⊗ωN/Ỹ ⊗∧•N ∨N/Ỹ )[−r],

and one can conclude that Hk(C) = q∗F ⊗∧kNN/Ỹ for k > 0. By the Grothendieck spectral

sequence it then suffices to show that Rq∗(∧kN ∨N/Ỹ ) = 0 for k > 0, which can be done by

relatingN ∨
N/Ỹ

to ON (1). We omit the details; see [Orl06, Prop 1.17].

• To check orthogonality of the Db(Y ) term, for F ∈Db(Y ) and G ∈Db(X) we have

Hom(Lp∗F ⊗Op(k),Ri∗q
∗G) = Hom(q∗F ⊗Oq(k),q∗G) (adjunction)

= Hom(q∗F ,q∗G ⊗Oq(−k))

= Hom(F ,Rq∗(q∗G ⊗Oq(−k))) (adjunction)

= Hom(F ,G ⊗Rq∗Oq(−k)) = 0 (projection formula)

since Rq∗Oq(−k) = 0.

• To check that the sequence generates Db(Ỹ ) we use the spanning class of skyscraper sheaves,

so it suffices to show that we can generate a Beilinson exceptional collection on each fiber.

Over X \ Y we have a Pr−1-bundle given by hyperplanes in PE∨, so the Db(X) terms give

Beilinson exceptional collections on the fibers over X \Y by pulling back skyscraper sheaves.

Now consider y ∈ Y . We compute

Lp∗Oy ⊗Op(k) = Lj∗π∗Oy ⊗Op(k)

= Lj∗Oπ−1(y) ⊗Op(k)

= Lj∗j∗Op−1(y) ⊗Op(k),

which has cohomology Op−1(y)(k) in degree 0 and Op−1(y)(k − 1) in degree −1 as in [Huy, Cor

11.4], since Ỹ is cut out by a section of Oπ(1). This allows us to inductively generate the

twists needed for a Beilinson exceptional collection on p−1(y), starting with Op−1(y) = ΦZOy .

Remark 4.24: This semi-orthogonal decomposition is another variant of the projective

bundle formula, much like the blowup formula, where we have a hypersurface inside a

projective bundle. Generalizations can be found in [Kuz05].
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