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Rationality of cubic fourfolds

We know classically that cubic curves are not rational (they are elliptic

curves).

However, cubic surfaces are always rational! Clemens and

Griffiths showed in 1972 that cubic threefolds are, in contrast, never

rational.

What about cubic fourfolds? There is some locus of cubic fourfolds

which are rational, but it is (conjecturally) neither open nor closed! Let’s

begin to understand their moduli space via the Torelli theorem of Voisin:

Theorem (Voisin): The period map

C → D

sending a cubic fourfold X to {H1,3(X ) ⊂ H4(X ,C)} is an open

immersion.
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Hodge theory cubic fourfolds



Hodge theory of the cubic fourfold

Let X ⊂ P5 be the zero locus of a degree 3 polynomial.

We can compare

its Hodge diamond to that of a K3 surface:

Cubic fourfold

K3 surface

If we take the primitive cohomology of the cubic fourfold, we get

(0, 1, 20, 1, 0) which looks exactly like the middle cohomology of a K3

surface!
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Cubic fourfolds and K3 surfaces

Cubic fourfold

K3 surface

However, the two have different signatures.

To be able to compare them,

we have to pass to a codimension one subspace. For the K3, we can

always take the primitive cohomology.

For special cubic fourfolds we can find a class T ∈ H2,2(X ,Z) and move

to its orthogonal complement (a generic cubic has no such class!)
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Hasset’s theorem

Because of the Torelli theorem, finding the class of cubic fourfolds for

which such a surface exists and moreover has an associated K3 surface is

a lattice-theoretic problem:

Theorem (Hasset): The cubics containing an integral class T

as above form a family of irreducible divisors Cd , nonempty iff (*)

d > 6, d = 0, 2 (mod 6). Moreover, the cubics in Cd have an

associated K3 surface i.e. ∃S such that

H2
prim(S ;Z)(−1) ≃ ⟨h2,T ⟩⊥

precisely when (**) d is not divisible by four, nine, or any odd

prime p = −1(mod 3)
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Derived perspective



The derived perspective

Kuznetsov presented a different viewpoint on the cubic fourfold using

derived categories. The three line bundles OX ,OX (1),OX (2) form an

exceptional collection and he defined the component

AX = ⟨OX ,OX (1),OX (2)⟩⊥ ⊂ D(X )

Kuznetsov showed that AX is a Calabi-Yau 2 category and posed the

conjecture:

Conjecture (Kuznetsov): X is rational if and only if there is a

K3 surface S such that

D(S) ≃ AX

We will embark to prove that the Kuznetsov component is CY2 and

explore this conjecture in the case of cubics containing a plane. But

before that, perhaps we need a refresher?
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Kuznetsov component is CY2



Kuznetsov component is Calabi-Yau

We consider the general case of a hypersurface in projective space

X ⊂ Pn+1.

One then studies the Serre functor SAX
on the subcategory

AX ⊂ D(X ). The aim is to show this is a shift functor. Firstly,

S−1
AX

= L⟨O,...,O(n+1−d)⟩ ◦ S−1
X = L⟨O,...,O(n+1−d)⟩ ◦ (−⊗ ω−1)[−n]

But

L⟨O,...,O(n+1−d)⟩ ≃ LO ◦ · · · ◦ LO(n+1−d)

If we put

O := LO ◦ (−⊗O(1))

then we can see that

On+2−d ≃ LO ◦ LO(1) ◦ ... ◦ LO(n+1−d) ◦ (−⊗O(n + 2− d)) =

= L⟨O,...,O(n+1−d)⟩ ◦ (−⊗ ω−1) ≃ S−1
AX

[n]
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Kuznetsov component is Calabi-Yau

So it remains to understand the functor O and its powers. Let us put

T := O|AX
.

The defining sequence for LO is

Hom(O,F )⊗O ev−→ F → LOF

But the first object is ΦO⊠O(F ) and the middle one ΦO∆
(F ). Hence,

LO = Φ[O⊠O→O∆]

Similarly, after tensoring by O(1) we get

T = Φ[O(1)⊠O→O∆(1)]
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Kuznetsov component is Calabi-Yau

To understand the powers of T , we understand the convolutions of its

kernel K .

Proposition : The kernel K i fits into a sequence

K i → O(1)⊠ Ωi−1(i − 1) → · · · → O(i)⊠O → O∆(i)

I only show the case i = 2. Apply K to the right and O(1)⊠O,O∆(1)

on the left to the triangle defining it:

(O(1)⊠O) ◦ K → (O(1)⊠O) ◦ (O(1)⊠O) → (O(1)⊠O) ◦ O∆(1)

O∆(1) ◦ K → O∆(1) ◦ (O(1)⊠O) → O∆(1) ◦ O∆(1)

K ◦ K → (O(1)⊠O) ◦ K → O∆(1) ◦ K

9
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Kuznetsov component is Calabi-Yau

We can simplify these further:

(O(1)⊠O) ◦ K →
(
O(1)⊠O

)
⊗ H•(O(1)) → O(1)⊠O(1)

O∆(1) ◦ K → O(2)⊠O → O∆(2)

K ◦ K → (O(1)⊠O) ◦ K → O∆(1) ◦ K

The first is O(1)⊠ an Euler sequence, so we see that

(O(1)⊠O) ◦ K ≃ O(1)⊠ Ω(1)

We can now replace this in the third triangle, as well as O(1) ◦ K by the

2-term complex to get

K ◦ K → O(1)⊠ Ω(1) → O(2)⊠O → O∆(2)
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Kuznetsov component is Calabi-Yau

Now let us write the complex giving the kernel K d :

O(1)⊠ Ωd−1(d − 1) → · · · → O(d)⊠O → O∆X
(d)

If we let K ′ be everything except the last O∆X
(d) then we have an exact

triangle:

K ′ O∆X
(d) K d

There is also an exact triangle, coming from Koszul resolving X × X in

Pn+1 × Pn+1 and then passing to cohomology sheaves:

O∆P(d)|X×X O∆X
(d) O∆X

[2]

by using the Beilinson resolution of the diagonal tensored with O(d)⊠O
we will show that ΦK ′ ≃ ΦO∆P (d)|X×X

11
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Kuznetsov component is Calabi-Yau

The pullback of Beilinson’s resolution to X × X is going to have more

terms than the kernel K ′ however they all act trivially on AX :

O(d − n − 1)⊠ Ωn+1(n + 1) → · · · → O ⊠ Ωd(d)︸ ︷︷ ︸
extra stuff in Beilinson resolution

→ O(1)⊠ Ωd−1(d − 1) → · · · → O(d)⊠O︸ ︷︷ ︸
K ′

For Ei = O(d − i)⊠ Ωi (i) with i = d , d + 1, . . . , n + 1, its Fourier-Mukai

transform on A ∈ AX vanishes, by using the projection formula, base

change and the fact that AX is orthogonal to O, . . . ,O(n + 1− d):

ΦEi (A) = q∗(p
∗A⊗ p∗O(d − i)⊗ q∗Ωi (i)) =

Ωi (i)⊗ q∗p
∗A(d − i) = Ωi (i)⊗Hom(O(i − d),A) = 0

We conclude that ΦK ′ ≃ Φ(ι×ι)∗O∆P (d)
and hence T d = [2].

12
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Kuznetsov component is Calabi-Yau

With all of this in mind, we can finally show:

Proposition (Kuznetsov component of cubic fourfold): We

have that

SAX
= [2]

for a cubic fourfold. Hence, it is a Calabi-Yau 2-category.

One should think of this as a non-commutative K3 surface.

We will now

explore a specific such non-commutative K3 given by twisting by a

Brauer class.
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Cubics containing a plane and

twisted K3 surfaces



Fundamental (non)-example: cubics containing a plane

The first nonempty item on Hasset’s list consists of the cubics containing

a plane. This is C8 (8 is coming from the intersection matrix

(
3 1

1 3

)
).

This class of cubics is perhaps the most important one: Voisin used it to

prove the Torelli theorem for cubic fourfolds, and Addington-Thomas

showed that C8 ∩ Cd ̸= ∅ for all other nonempty Cd and used deformation

theory out of C8 to deduce that Hasset’s and Kuznetsov’s conjectures are

in fact equivalent!
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Cubics containing a plane

If P ⊂ X ⊂ P5 is a cubic fourfold containg a plane, then there is a

residual quadric fibration More on the geometry

BlPX = X̃ → P2

The fibers are generically P1 × P1 degenerating to a cone over a sextic

curve in the base. Now, P1 × P1 has exactly two rulings, parametrized by

the connected components of the Fano variety of lines

F̃ (P1 × P1) = P1
∐

P1

A singular quadric is a cone, so has exactly one ruling:

F̃ (Q) = P1

If we define S to be the space of rulings on the fibers, we see that it is a

double cover of P2 branched along the sextic curve. Moreover, the

relative Fano variety parametrizing lines in the fibers is a P1 bundle over

this:

F̃
πS−→ S

π−→ P2

15
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Twisted K3 surfaces

In fact, this S is a K3 surface.

There is an obstruction cocycle α to F̃

being a projectivization of a vector bundle, governed by the exact

sequence

1 → Gm → GL → PGL → 1

We can consider twisted vector bundles on S which only satisfy the

cocycle condition up to α, and they have a derived category D(S , α).

Theorem (Bernardara’s twisted projective bundle formula):

There is a semiorthogonal decomposition

D(F̃ ) = ⟨D(S , α),D(S)⟩

16
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Kuznetsov’s equivalence: FM kernel

Theorem (Kuznetsov): There is a derived equivalence

AX ≃ D(S , α)

One way to do this is via an FM kernel from the universal line

P̃ ⊂ X × F̃ with ideal sheaf I and its adjoint:

D(X ) D(F̃ )

AX D(S , α)

Φ

Ψ

≃

17
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Kuznetsov’s equivalence: mutation

The idea is to compare two different SOD’s for X̃ : one coming from its

realization as a quadric fibration, the other as a blowup. We turn the

quadric fibration one to the blowup one in steps, which transports a

twisted category D(P2,B) into the Kuznetsov component.

We begin by

right mutating the twisted category:

⟨ΦD(P2,B), O(−h), O, O(h), O(H), O(h + H), O(2h + H)⟩

R

18
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Kuznetsov’s equivalence: mutation

Now, we move the line bundle O(−h) all the way around:

⟨O(−h), Φ′D(P2,B), O, O(h), O(H), O(h + H), O(2h + H)⟩

R

19
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Kuznetsov’s equivalence: mutation

We transpose the line bundles at the end, which we can do as their Ext

groups vanish and they are completely orthogonal:

⟨Φ′D(P2,B), O, O(h), O(H), O(h + H), O(2h + H), O(2H)⟩

T

This is done via a projection formula:

Ext•
X̃
(O(2h + H),O(2H)) ≃ Ext•

X̃
(O,O(H − 2h)) ≃

Ext•P2(O, ϕ∗O(H − 2h)) ≃ Ext•P2(O, ϕ∗(Oϕ(1)⊗ ϕ∗O(−2)) ≃
Ext•P2(O,F∨ ⊗O(−2)) = 0
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Kuznetsov’s equivalence: mutation

Now, we move the line bundle at the end to the front:

⟨Φ′D(P2,B), O, O(h), O(H), O(h + H), O(2H), O(2h + H)⟩

R

21
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Kuznetsov’s equivalence: mutation

Left mutate the twisted derived category:

⟨O(h − H), Φ′D(P2,B), O, O(h), O(H), O(h + H), O(2H)⟩

L

22
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Kuznetsov’s equivalence: mutation

Simultaneously right mutate a bunch of line bundles:

⟨Φ′′D(P2,B), O(h − H), O, O(h), O(H), O(h + H), O(2H)⟩

R R R

To compute the mutations, we need to use the exact triangle

RO(O(h − H)) → O(h − H) → Hom(O(h − H),O)∗ ⊗O

together with the fact that E ∼ H − h and the fact that

Ext•(O(h − H),O) ≃ C. This follows again by a projection formula

argument.
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Kuznetsov’s equivalence: mutation

The result is:

⟨Φ′′D(P2,B), O, OE , O(H), OE (H), O(2H), OE (2H)⟩

T

R

Finally, we do a transposition (the two line bundles are completely

orthogonal) and a right mutation to put it in the following form:
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Kuznetsov’s equivalence: mutation

⟨Φ′′D(P2,B), O, O(H), O(2H), OE , OE (H), OE (2H)⟩

But

this looks the same as the semiorthogonal decomposition given by the

blowup formula:

D(X̃ ) ≃ ⟨D(X ),D(P2)⟩

since it decomposes as

⟨AX , O, O(H), O(2H), OE , OE (H), OE (2H)⟩

We finally deduce:

Theorem (Kuznetsov): For cubics X containing a plane, we have

the equivalence

AX ≃ D(P2,B) ≃ D(S , α)
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Relation to other cubic fourfolds

We have just seen that the cubic fourfolds with a plane behave like

twisted K3 surfaces. A natural question to ask is when are they actually

geometric, i.e. α = 1?

Theorem (Kuznetsov): The Brauer class vanishes precisely when

there is another surface class W satisfying deg(W )− P ·W being

odd. This is equivalent to X ∈ C8 ∩ Cd where Cd is one of the

divisors with associated K3 surfaces.
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Addington-Thomas’ argument

27



Thank you for your attention!
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Refresher on SOD’s



Refresher on semiorthogonal decompositions, Serre functors

and mutations

Recall the following fundamental notions:

Definition : Let E be an exceptional object. Then there are two

projection functors LE : D → ⟨E ⟩⊥, RE : D →⊥ ⟨E ⟩

LE (F ) := cone(Hom(E ,F )⊗ E → F )

RE (F ) := cone(F → Hom(F ,E )∨ ⊗ E )[−1]

This definition can be extended to so-called admissible subcategories,

where there are more general replacements for the functors

Hom(E ,−),Hom(−,E )∨ : D → ⟨E ⟩ adjoint to the inclusion.
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Refresher on semiorthogonal decompositions, Serre functors

and mutations

Proposition (Mutations of exceptional sequences): A full ex-

ceptional sequence ⟨E1, . . . ,En⟩ gives rise to mutated full excep-

tional sequences

⟨E1, . . . ,Ei−1,LEiEi+1,Ei ,Ei+2, . . . ,En⟩

and

⟨E1, . . . ,Ei−2,Ei ,REiEi−1,Ei+1, . . . ,En⟩.

Definition (Serre functor): A Serre functor is an additive, C-
linear autoequivalence obeying:

Hom(A,B)∗ ≃ Hom(B,S(A))

A category is CYn if the Serre functor is given by [n]. back
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Cubics containing a plane:

geometry



Cubics containing a plane: geometry

Projecting orthogonally out of a plane P ⊂ P5 gives a rational map

PNP/P5 ≃ E BlPP5

P P5 P2

τ
ϕ

In coordinates, if P = V(z0, z1, z2), then the rational map is given by the

linear system |IP ⊗O(1)| which has basis z0, z1, z2 and base locus P.

It

is resolved by blowing up, and the map ϕ is given by the linear system

IE ⊗ τ∗O(1).

Hence, we see that

IE ⊗ τ∗O(1) ≃ ϕ∗O(1)

If we denote by H the hyperplane class in P5 and by h the one on P2,

then this implies that

E ∼ H − h
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Cubics containing a plane: geometry

If we write the blowup in coordinates, we see that

We can think of the blowup in this simplified setting as the set

BlPP5 = {p ∈ P5, q ∈ P2| piqj = pjqi , 0 ⩽ i , j ⩽ 2} ⊂ P5 × P2

which comes equipped with two projection maps to P5 and P2 which are

the blowup and resolution maps, respectively. We can clearly see that

over P2, this is a projective bundle by looking at the affine cone over P5:

{a ∈ A6, q ∈ P2| aiqj = ajqi , 0 ⩽ i , j ⩽ 2} → P2

We can see that the coordinates a3, a4, a5 are unconstrained, so give us a

copy of the trivial bundle O⊕3. The other three coordinates give us

precisely the tautological bundle:

O(−1) = {(a0, a1, a2) ∈ A3, q ∈ P2| (a0, a1, a1) ∈ q}

Hence, we conclude that

BlPP5 = P(O(−1)⊕O⊕3) := P(F∨)



Cubics containing a plane: geometry

The strict transform X̃ ∼ 2H + h and is thus a quadric fibration

X̃ → P2

which geometrically can be thought of as follows: the P2 parametrizes

3-planes containing P, and X intersects such a 3-plane in P union a

quadric.

We can see X̃ as the zero locus of q ∈ H0(P2,S2F ⊗O(1)) which can

also be thought of as a map F → F∗ ⊗O(1). The quadric fibers are

nonsingular outside the determinant locus, which is a sextic curve, since

det(q) = O(6). back
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